УДК 577.1:543.422.27 DOI 10.26456/vtchem2021.2.6

СРАВНЕНИЕ ПРОЦЕССОВ САМООРГАНИЗАЦИИ В ВОДНЫХ РАСТВОРАХ L-ЦИСТЕИНА И N-АЦЕТИЛ-L-ЦИСТЕИНА С НИТРИТОМ СЕРЕБРА

Т.В. Потапенкова, Д.В. Вишневецкий, А.И. Иванова, С.Д. Хижняк, П.М. Пахомов

Тверской государственный университет, Тверь,

С помощью методов УФ спектроскопии, динамического светорассеяния (ДСР) и сканирующей электронной микроскопии (СЭМ) в водных растворах L-цистеина и N-ацетил-L-цистеина (НАЦ) с нитритом серебра (AgNO₂) при концентрации от 0.001 М до 0.025 М и различных соотношениях исходных компонентов изучены процессы самоорганизации, приводящие к образованию гидрогеля. Установлено, что для растворов на основе L-цистеин и AgNO₂ (цистеин-серебряный раствор – ЦСР) с концентрацией исходных компонентов 0.025 М и выше образуются устойчивые гидрогели, содержащие наночастицы серебра (НЧС). В то же время, в растворах на основе НАЦ и AgNO₂ гели и НЧС не формировались. Определены закономерности и условия, влияющие на процесс образования геля, что позволило предложить механизм гелеобразования в ЦСР.

Ключевые слова: *L*-цистеин, *N*-ацетил-*L*-цистеин, нитрит серебра, процессы самоорганизации, супрамолекулярный гидрогель, наночастицы серебра

В работах [1, 2] установлено, что при концентрации водных растворов L-цистеина и нитрита серебра 0.01 М и соотношениях L-цистеин/AgNO₂ 1.0/1.0 и 1.00/1.25 формируются супрамолекулярные гидрогели (СМГ). Полученные результаты оказались интересными, и исследования в этой области продолжаются. Для более детального понимания процессов самоорганизации, происходящих в изучаемых системах, был расширен концентрационный диапазон исходных компонентов в растворе от 0.001 до 0.025 М. Изменение концентрации дисперсной фазы в растворе, а именно, ее снижение до 0.001 М и увеличение до 0.025 М, позволило определить граничные условия формирования гидрогелей [3].

В виду того, что исходные компоненты являются биологически активными веществами, подобные СМГ способны выполнять функцию структурной основы биомедицинских препаратов, а также служить активной матрицей для биологически активных соединений, усиливая их действие [4-6].

> 56 © Потапенкова Т.В., Вишневецкий Д.В.,Иванова А.И., Хижняк С.Д., Пахомов П.М., 2021

Кроме того, установлено, что гидрогели на основе ЦСР успешно подавляют пролиферацию клеток MCF-7 и обладают достаточно сильным цитотоксическим действием [2]. В то же время, гели демонстрировали отсутствие токсического влияния на эмбриональные клетки фибробласт и, более того, клетки под влиянием гелей активно делились и росли. Детальное изучение свойств ЦСР и гидрогелей на его основе привело к обнаружению в них наночастиц серебра (НЧС).

Представляет интерес замена исходной аминокислоты Lцистеина на НАЦ, что позволит исследовать влияние химической природы аминокислоты (Рис. 1) на возможность получения СМГ и НЧС. Ранее было установлено, что система, состоящая из растворов НАЦ и нитрата серебра (AgNO₃), способна образовывать гидрогель при малых концентрациях дисперсной фазы [7].

А Б Рис. 1. Структурные формулы L-цистеина (А) и N-ацетил-L-цистеина (Б)

Целью настоящей работы является изучение и сравнение процессов самоорганизации в водных растворах L-цистеина, НАЦ и AgNO₂ с использованием комплекса физико-химических методов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В настоящей работе были использованы реактивы: серебро азотистокислое 99% («Lancaster») и L-цистеин 99% («Acros»). Все растворы готовили на бидистиллированной воде. Растворимость нитрита серебра в воде при 25°C в 550 раз меньше, чем нитрата серебра, и составляет 0.0266 М [8].

Цистеин-серебряные растворы (ЦСР) готовили путем смешения исходных водных растворов L-цистеина (или НАЦ) и нитрита серебра с концентрацией дисперсной фазы 0.001, 0.01 и 0.05 М в соотношениях от 1.0/0.8 до 1.0/1.6. В опытах использовали только свежеприготовленные растворы исходных компонентов. В табл. 1 представлены исследуемые образцы ЦСР.

УФ спектры ЦСР и гидрогелей на их основе регистрировали на спектрофотометре «Evolution Array» (фирмы «Thermo Scientific», США) в диапазоне от 200 до 1100 нм. Запись спектров осуществляли при комнатной температуре в кварцевых кюветах с толщиной поглощающего слоя 1 мм.

Таблица 1

1	
№ образца	Молярные соотношения L-цистеин, (НАЦ)/AgNO ₂
1	1.0/0.8
2	1.0/1.0
3	1.0/1.8
4	1.00/1.16
5	1.00/1.25
6	1.0/1.3
7	1.0/1.5
8	1.0/1.6

Молярные соотношения исходных компонентов при приготовлении ЦСР

Исследование интенсивности светорассеяния в системе Lцистеин/AgNO₂, а также оценку распределения рассеивающих частиц по размерам проводили на анализаторе Zetasizer Nano ZS ("Malvern") с Не-Nе-лазером (633 нм) мощностью 4 мВт. Все измерения осуществлялись при температуре 25°С в конфигурации обратного рассеяния (173°), обеспечивающей наибольшую чувствительность прибора. Математическая обработка результатов, полученных кросскорреляционных функций флуктуаций интенсивности рассеянного света $g_2(\tau)$ проводилась в программе Zetasizer Software, где решение полученного уравнения зависимости g2(т) от коэффициента диффузии производилось методом куммулянтов. Результатом решения являлась функция z(D). Гидродинамические радиусы рассеивающих частиц рассчитывались из коэффициентов диффузии по формуле Стокса-Эйнштейна: D= kT/6πηR, где D – коэффициент диффузии, k – константа Больцмана, T – абсолютная температура, η – вязкость среды, R – радиус рассеивающих частиц.

Электрофоретическая подвижность агрегатов измерялась с помощью прибора"Zetasizer Nano ZS". Для расчета ζ -потенциала использовалось уравнение Генри: $U_{\rm E}=2\varepsilon\zeta f({\rm Ka})/3\eta$, где $U_{\rm E}$ электрофоретическая подвижность, ζ -дзета-потенциал, ε диэлектрическая константа, η –вязкость и $f({\rm Ka})$ – функция Генри, ($f({\rm Ka})$ = 1.5 для водных растворов).

Морфологию гидрогелей исследовали методом сканирующей электронной микроскопии с помощью установки «JEOL JSM-6610 LV». Образцы наносились тонким слоем на двустороннюю проводящую углеродную ленту для хорошего электрического контакта с предметным столиком микроскопа. Сушка проводилась в режиме вакуума 10⁻⁴ Па. Для уменьшения деградирующего воздействия на образцы сканирующего электронного зонда исследования проводили при низком

ускоряющем напряжении не более 7 кВ в режиме вторичных электронов. Разрешающая способность микроскопа при таком напряжении составляла 5 нм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В ходе исследований было обнаружено, что при концентрации растворов исходных компонентов 0.025 М для L-цистеина происходит образование прочных гидрогелей, оцениваемых по шкале прочности [9, 10] в 5 баллов, т.е. при переворачивании пробирки текучесть гелей отсутствовала. Увеличение концентрации полностью исходных компонентов, приводит к образованию прочных гелей, но не обладающих тиксотропными свойствами. Особенностью таких гелей гидрогели образуются стоит отметить TO, что сами при непосредственном смешении водных растворов исходных компонентов без добавления солей инициаторов, что позволяет получить гель в одну стадию, в отличие от систем на основе других солей серебра, таких как AgNO₃ или CH₃COOAg. Как было выяснено, именно анион соли электролита является скрепкой между зародышевыми агрегатами в растворе ЦСР, в результате чего образуется пространственная гельсетка [4-6, 9-12].

Установлено, что растворы с концентраций 0.01 и 0.025 М при соотношениях L-цистеин/AgNO₂ 1.00/1.00 и 1.00/1.25 образуют гидрогели (рис. 2). Процесс гелеобразования в водных растворах L-цистеина и AgNO₂ происходил при строгом соблюдении концентрационных условий исходных компонентов.

Рис. 2. Фотографии гелей на основе L-цистеина (а) и ЦСР на основе НАЦ (б) и $AgNO_2$ при концентрации компонентов 0.025 M (а) при соотношении исходных компонентов 1.0/1.0 (1) и 1.0/1.25 (2)

Визуальная характеристика полученных образцов ЦСР показала, что их окраска варьируется от практически бесцветных до насыщенножёлтых тонов в зависимости от концентрации и молярного

Вестник Тверского государственного университета. Серия «Химия». 2021. № 2 (44)

соотношения исходных компонентов (рис. 3). Образцы при концентрации исходных компонентов 0.025 М (рис. 3 в) имели более выраженный насыщенный жёлтый цвет. Растворы оказались склонными к опалесценции, но не приводящими к выпадению осадка. Окрашивание растворов может свидетельствовать о наличии НЧС серебра, которые формируются в ЦСР, как результат межмолекулярного взаимодействия между аминокислотой и нитритом серебра.

Необходимо отметить, что независимо от концентрации исходных компонентов, рост содержания AgNO₂ в растворе приводит к усилению интенсивности его окраски. ЦСР сразу после смешивания водных растворов исходных компонентов были прозрачны и выпадения осадка не наблюдалось. При концентрации исходных компонентов > 0.025 М полученные образцы оказались нестабильны. Данное явление связано с тем, что нитрит серебра имеет ограниченную растворимость в воде [13], и получение гелей при большей концентрации невозможно. При концентрации исходных компонентов < 0.001 М растворы оказались прозрачными, и не способными к образованию гидрогелей и НЧС, что подтверждает визуальная оценка образцов и метод УФ спектроскопии (рис. 4а).

Рис. 3. Фотографии образцов ЦСР на основе L-цистеина и AgNO₂ сразу после смешивания при концентрации исходных компонентов 0.01 (a), 0.025 (б) и НАЦ и AgNO₂ 0.01M (в) при разных молярных соотношениях компонентов (табл. 1)

Системы на основе НАЦ и AgNO₂ независимо от концентрации исходных компонентов оказались бесцветными и при стоянии не оказались способны к образованию гелей (рис. 3в)

С помощью метода УФ спектроскопии исследованы процессы самоорганизации, происходящие в ЦСР после их стояния в покое и отсутствии света в течение 1 дня. Анализ электронных спектров ЦСР с концентрацией исходных компонентов 0.001 М показал, что для образцов №1 и №2 с меньшим содержанием нитрита серебра в спектре присутствуют характеристические полосы поглощения с максимумами 285 и 364 нм (рис. 4 а). Для систем с его избыточным содержанием (образцы №5, 8) эти полосы отсутствуют.

Рис. 4. Электронные спектры поглощения ЦСР на основе L- цистеина (а, б, в), НАЦ (г) и AgNO₂ для линейки образцов (Табл.1) при концентрации исходных компонентов 0.001M (а), 0.01M (б), 0.025M (в) и 0,01 M (г) через день после приготовления раствора

Интенсивности этих полос различны при разных соотношениях компонентов, что связано с разными коэффициентами экстинкции хромофорных групп [14, 15]. Полоса поглощения при 364 нм вероятно отвечает $n-\pi^*$ переходу электронов в гидратированном анионе NO₂ ⁻ [16-20], а полоса 285 нм соответствует $n-\pi^*$ переходу в группировке -C=O обобществленной системы электронных взаимодействий карбоксильной группы и протонированной амино-группы меркаптида серебра. Также наблюдается полоса поглощения на длине волны 213 нм, которую, по-видимому, можно отнести к $n-\pi^*$ переходу -C=O и которая присутствует в спектре самой аминокислоты L-цистеин. Данная полоса присутствует во всех системах, независимо от содержания нитрита серебра.

Для систем с наибольшим содержанием серебра в ЦСР наблюдается значительные изменения в электронном спектре и, вероятно, это связано с тем, что нитрит-анион крайне нестабилен в водных средах [18]. При концентрации растворов исходных компонентов 0.01 М (рис. 46) остаётся полоса поглощения 285 нм, но при этом для всех систем, независимо от молярного соотношения L-цистеина и AgNO₂ появляется новая полоса поглощения при $\lambda \sim 410$ нм, которая ранее отсутствовала и которая отвечает плазмонному резонансу на поверхности H4C [21-24].

С увеличением концентрации (0.025 М) и соотношения исходных компонентов характер полос поглощения и их интенсивность в спектре изменяется (рис. 4 в). Как было отмечено выше, характер окрашивания раствора при различных соотношениях компонентов отличается. Это явление свидетельствует о наличии и изменении концентрации НЧС в растворе и геле.

Таким образом, формирование НЧС зависит от концентрации AgNO₂ и соотношения исходных компонентов в растворе.

Исследование ЦСР на основе НАЦ, показало ЧТО вне зависимости от концентрации исходных компонентов наблюдается отстутствие полос поглощения, отвечающих плазмонному резонансу НЧС (рис. 4г). Визуальная оценка образцов также подверждает данное наблюдение, так как системы на основе НАЦ/ AgNO2 не имеют характерного окрашивания. В спектрах присутствует полоса поглощения 213 нм, которая также присутствует в спектрах систем на основе L- цистеин, отвечающая за переход n- π^* -C=O в аминокислотах.

Вышеуказанные системы оказались идеальными для изучения методом ДСР, т.к. образующиеся в растворе агрегаты достаточно устойчивы во времени (рис. 5). Были проведены кинетические исследования для выяснения стабильности и размеров частиц в водных растворах при непосредственном смешении исходных компонентов и в течение продолжительного времени. Разброс в распределении размеров частиц, образующихся в системе на основе L-цистеина небольшой, в среднем колеблется от 70 нм - 100 нм при концентрациях аминокислоты и нитрита серебра 0.01 и 0.025 М.

В

При исследовании растворов на основе HAЦ/ AgNO₂ при концентрации исходных компонентов 0.01 М размеры образующихся частиц оказались значительно меньше, чем в системе на основе Lцистеин/AgNO₂ при той же концентрации. Их значения находятся в районе 12-15 нм (Рис. 5 в). Вероятно, в виду того, что процесс самоорганизации в этих системах протекает по разным закономерностям, размеры, образующихся частиц отличаются. Одним из важных критериев является то, что обе системы, независимо от наличия той или иной аминокислоты, устойчивы во времени.

Определение значения дзета(ξ)-потенциала оказалось очень важным параметром, характеризующим исследуемые системы, так как его величина и изменение проясняет вопрос их стабильности с точки зрения теории двойного слоя. Прямая зависимость коагуляционной устойчивости от ξ -потенциала делает этот параметр незаменимым при экспериментальной оценке характеристик стабильности дисперсных водных растворов, включая растворы наночастиц. Вестник Тверского государственного университета. Серия «Химия». 2021. № 2 (44)

Таблица 2

Эначения счотем различных концентрации			
Молярные	Цистеин	НАЦ	
соотношения	0.01 M		
ЦИС/AgNO ₂	Значения ξ - потенциала, мВ		
HAII/AgNO ₂		-	
1.0/1.0	27	-18	
1.0/1.25	25.5	4.5	
	0.025M		
1.0/1.0	27.4	-15	
1.0/1.25	35	3.2	

Значения Е-потенциала систем различных концентраций

Для молекул и частиц, которые достаточно малы, высокий ξ потенциал будет означать стабильность, т.е. раствор или дисперсия будет устойчивы по отношению к агрегации. Так, коллоиды с высоким ξ -потенциалом являются электрически стабилизированными, в то время как коллоиды с низким ξ - потенциалом склонны коагулировать или флокулировать. Значение ξ -потенциала равное 30 мВ (положительное или отрицательное) можно рассматривать как характерное значение, для условного разделения низко-заряженных и высоко-заряженных поверхностей [25, 26].

Таким образом, системы на основе НАЦ нельзя отнести к устойчивым в связи с коагуляцией и выпадением осадка со временем стояния образцов, что также подтверждается низким значением **ξ**потенциала. Напротив, значения **ξ**-потенциала для системы, в состав которой входит L-цистеин, оказалась более устойчивой и электрически стабилизированной при данных условиях.

С помощью метода СЭМ удалось подтвердить структуру геля. Удалось визуализировать структуру геля, полученного при концентрации исходных компонентов 0.025 М (рис. 6 а). Метод СЭМ подтверждает то, что гидрогели обладают сеточной структурой, как и гели, полученные при концентрации 0.01 М [1, 2]. Отсутствие сеточной структуры подтверждает тот факт, что система на основе НАЦ/ AgNO₂ оказалась не способна к образованию гидрогелей.

64

Рис. 6. СЭМ изображения (a) – образец геля L-цис:AgNO₂, (1.0:1.0), $C_M = (L$ -цистеин, AgNO₂) = 0.025M, (б) – ЦСР НАЦ: AgNO₂, (1.0:1.0), $C_M = (L$ -цистеин, AgNO₂) = 0.025M

б

Полученные данные позволяют обосновать следующий механизм формирования гелей на основе L-цис/AgNO₂. Предположительно фрагменты сетки построены из пересекающихся цепочек, которые, в свою очередь, формируются из молекул меркаптида серебра (MC). Это характерная реакция для соединений с незамещённой меркаптогруппой. Как правило, в водном растворе образуется малорастворимый осадок MC, в котором серебро замещает атом водорода -SH группы [27-29]. В области концентраций компонентов, благоприятных для гелеобразования, MC не агрегирует с образованием осадка. Основополагающая стадия образования MC, как этап дальнейшего формирования геля, остаётся такой же, как и для систем L-цис/AgNO₃, L-цис/CH₃COOAg [4-6, 9-11].

Следует отметить, что формирование трехмерной гель-сетки определяется не только взаимодействием между атомами серебра и серы. Важнейшей структурной особенностью гель-систем является формирование в растворе положительно заряженных цепочек МС, распределенных в водной фазе. На следующей, более медленной стадии, происходит самоорганизация молекул МС с образованием супрамолекулярных цепей И сеточных структур за счет межмолекулярных водородных связей, возникающих между группами – ОН и – СООН, ввиду большой степени их поляризации. Азотистая кислота довольно слабая кислота и дефицит электронной плотности на её атоме азота меньше, чем в азотной кислоте, у которой на атоме азота имеется полный положительный заряд. Этот факт объясняет, что специфичность строения нитрит-аниона и его отличие от нитрата и ацетат-аниона приводит к иному способу структурирования. Таким образом, на процесс гелеобразования безусловно оказывают влияние наличие межмолекулярных водородных связей, а также зарядовое состояние сеточных фрагментов, в формировании которых участвуют нитрит-анионы, взаимодействующие с аминогруппами цистеина.

Установлено, ЧТО природа аминокислоты, а именно eë химический состав, наличие тех или иных функциональных групп и их расположение, существенно влияет на возможность взаимное получения тиксотропного геля, содержащего НЧС. Это явление оказалось характерно для системы с L-цистеином и не характерно для системы с N-ацетил-L-цистеином. Изменение концентрации исходных компонентов и их соотношения позволяет контролировать конечные важные характеристики системы: стабильность, дисперсность, величину заряда, концентрацию НЧС и индекс полидисперсности.

Работа выполнена на базе ЦКП Тверского государственного университета.

Список литературы

- 1. Перевозова Т.В., Овчинников М.М., Арутюнян Л.Р., Арутюнян Р.С., Хижняк С.Д., Пахомов П.М. // Вестник ТвГУ. Серия: Химия. 2016. №2. С.135.
- 2. Vishnevetsky D., Mekhtiev A., Perevozova T., Averkin, D., Ivanova A., Khizhnyak S., Pakhomov P. // Soft Matter. 2020. V. 16. P. 9669.
- Потапенкова Т.В, Хижняк С.Д., Вишневецкий Д.В., Пахомов П.М. // Вестник ТвГУ. Серия "Химия". 2020. № 4 (42). С. 45–53
- Pakhomov P.M., Khizhnyak S.D, Ovchinnikov M.M., Spiridonova V.M. // Nanotechnologies in Russia. 2010. V. 5. N3–4, P. 20.
- 5. Pakhomov P.M., Ovchinnikov M.M., Khizhnyak S.D., Roshcina O.A., Komarov P.V. // Polym. Sci. A. 2011. V. 53. P. 820.
- Baranova O.A., Kuz'min N.I., Samsonova T.I., Rebetskaya I.S., Petrova O.P., Pakhomov P.M., Khizhnyak S.D, Komarov P.V., Ovchinnikov M.M. // Fibre Chemistry. 2011. V. 43. P. 90.
- 7. Хижняк С.Д., Овчинников М.М., Пахомов П.М. // Журнал структурной химии, 2014, С.173-177
- 8. Никольский Б.П. Справочник химика // 2-е изд., испр. М.-Л.: Химия, 1966. Т 1.С. 1072
- Ilyin S. O., Spiridonova V. M., Savelyeva V. S., Ovchinnikov M. M., Khizhnyak S. D., Frenkin E. I., Pakhomov P. M., Malkin A. Ya. // Colloid J., 2011, V. 73, P. 646.
- Khizhnyak S. D., Komarov P .V, Ovchinnikov M. M., Zherenkova L. V., Pakhomov P. M. // Soft Matter, 2017, V. 30, P. 5168.
- 11. Adamyan A.N., Vishnevetsky D.V., Khizhnyak S.D., Pakhomov P.M. // Bulletin of the Russian Academy of Sciences. Chemistry, 2020, №7, P.1799
- 12. Khizhnyak S.D., Pakhomov P.M., Ovchinnikov M.M., Adamyan A. N., Patent of Russian Federation № 2016144768, 16.11.2018
- 13. Зинченко А.В., Изотова С. Г., Румянцев А.В.Новый справочник химика технолога// С.-Пб «Профессионал», 2001, С. 284
- 14. Berova N., Harada N., Nakanishi K. // Encyclopedia of Spectroscopy and Spectrometry, 2017, 3, P. 539-557
- Dinu R., Miller E., Pilgrim C. // Optical Fiber Telecommunications, 2013, V. 6, P. 175-204

Вестник Тверского государственного университета. Серия «Химия». 2021. № 2 (44)

- 16. Oplände C., Suschek C. V. // Int. J. Mol. Sci. 2013, V. 14, P. 191-204;
- 17. Jiao L.Z., Dong D.M., Zheng W.G., Wu W.B., Feng H.K. // Asian Journal of Chemistry; V. 25, No. 4 2013, P. 2273-227
- 18. Lawson-Wood K., Robertson I. // PerkinElmer, Inc.Seer Green, UK, Molecular Spectroscopy, <u>www.perkinelmer.com</u>
- Bouvie J., Bekri M., Mazouni D. //International Journal of Chemical Reactor Engineering, 2008, V. 6(1), P. 1–19
- 20. Hess A., Morgenroth E. // Master Thesis FS, Zürich, 2015
- 21. Khizhnyak S. D., Komarov P. V., Ovchinnikov M. M., Zherenkova L. V., Pakhomov P. M. // Soft Matter, 2017, V. 30, P. 5168
- 22. Agnihotri S., Mukherji S., Mukherji S. // RSC Adv., 2014, V. 4, P, 3974-3983
- 23. Budhiraja N., Sharma A., Dahiya S., Parmar R. // International Letters of Chemistry, V. 19, P. 80-88
- 24. Desai R., Mankad V., Gupta S.K., Jha P.K. // Nanoscience and Nanotechnology Letters, 2012, V. 4, P. 30-34
- 25. Shyam M., Shivendu R., Dasgupta N. Nanoscience and nanotechnology in drug delivery, 2018, 682 p/
- 26. Gumustas M., Sengel-Turk C., Gumustas A., Ozkan S., Multifunctional systems for combined delivery, biosensing and diagnostics, 2017, P.67
- 27. Bell R.A.; Kramer J.R. Environ. Toxicol. Chem, 1999, V. 18, 9–22
- 28. Randazzo R., Mauro A. D., D'Urso A., Messina G. C. // Phys. Chem. B, 2015, V. 119, P. 4898–4904
- 29. Cui Y., Wang Y. and Zhao L. // Small, 2015, V. 11, P. 5118-5125

Об авторах:

ПОТАПЕНКОВА Татьяна Викторовна – аспирант, кафедра физической химии Тверского государственного университета, e-mail: tanya.perevozova05@yandex.ru

ХИЖНЯК Светлана Дмитриевна – кандидат химических наук, зав. лаборатории спектроскопии кафедра физической химии Тверского государственного университета, e-mail: sveta_khizhnyak@mail.ru

ВИШНЕВЕЦКИЙ Дмитрий Викторович – кандидат химических наук, доцент кафедря физической химии Тверского государственного университета, e-mail: rickashet@yandex.ru

ИВАНОВА Александра Ивановна – кандидат физико-математических наук, доцент, кафедра прикладной физики Тверского государственного университета, e-mail: Ivanova.AI@tversu.ru

ПАХОМОВ Павел Михайлович – доктор химических наук, профессор, заведующий.кафедры физической химии Тверского государственного университета, e-mail: pavel.pakhomov@mail.ru

COMPARISON OF SELF-ORGANIZATION PROCESSES IN AQUEOUS SOLUTIONS OF L-CYSTEINE AND N-ACETYL-L-CYSTEINE WITH SILVER NITRITE

T.V. Potapenkova, D.V. Vishnevetsky, A.I. Ivanova, S.D. Khizhnyak, P.M. Pakhomov

Tver State University, Tver

Using the methods of UV spectroscopy, dynamic light scattering (DLS) and scanning electron microscopy (SEM) in aqueous solutions of L-cysteine and N-acetyl-L-cysteine (NAC) add silver nitrite (AgNO₂) at different concentration from 0.001 to 0.025 M the processes of self-organization leading to the formation of a hydrogel have studied in various ratios of the initial components. It has found that for solutions based on L-cysteine and AgNO₂ (cysteine-silver solution - CSS) with a concentration of initial components of 0.025 M form stable hydrogels containing silver nanoparticles (SNPs). At the same time, solutions based on NAC and AgNO₂ are unable to form gels and SNPs. The regularities and conditions influencing the process of gel formation have been determined, which made it possible to propose a mechanism of gelation in the CSS.

Keywords: L-cysteine, silver nitrite, N-acetyl-L-cysteine, self-organization processes, supramolecular hydrogel, silver nanoparticles