NUMBER OF MAXIMAL ROOTED TREES IN UNIFORM ATTACHMENT MODEL VIA STOCHASTIC APPROXIMATION ${ }^{1}$

Malyshkin Y.A.*,**
*Tver State University, Tver
${ }^{* *}$ Moscow Institute of Physics and Technology, Moscow

> Received 08.08.2022, revised 30.08.2022.

Abstract

We study the asymptotic behavior of the number of maximal trees in a uniform attachment model. In our model, we consider a sequence of graphs built by the following recursive rule. We start with the complete graph on $m+1$ vertices, $m>1$. Then on the $n+1$ step, we add vertex $n+1$ and draw m edges from it to different vertices, chosen uniformly from $1, \ldots, n$. We prove the convergence speed for the number of maximal trees in such a model using the stochastic approximation technique.

Keywords: random graphs, uniform attachment, stochastic approximation.

Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2022, № 3, 27-34, https://doi.org/10.26456/vtpmk640

Introduction

The number of subgraphs of a graph is important in the understanding of the local structure and properties of the graph and was studied for various graph models (see, e.g., $[2,3])$. In the present paper, we are focused on the number of maximal subtrees (a subtree is maximal in G_{n} if all its non-leaf vertices are adjacent only to vertices of that tree) for a uniform attachment model. While the expected number of subgraphs is often obtained using combinatorial arguments (see, e.g., [4]) we would use stochastic approximation (see $[1,6]$ for more details on stochastic approximation processes) to obtain result about the convergence rate.

Let us describe the model of graphs $G_{n}=G_{n}(m)$ that we consider in the paper. We start with a complete graph G_{m} on m vertices. Then on each step, we construct a graph G_{n} by adding to G_{n-1} a new vertex and drawing m edges from it to different vertices, chosen uniformly among vertices of G_{n}.

For a rooted tree T, let $N_{T}(n)$ be the number of vertices that are roots of maximal subtrees of G_{n} isomorphic to T. Note that the set $\mathcal{T}_{N, b}$ of all isomorphism classes of rooted trees with at most N vertices of depth b is finite. We would refer to a maximal subtree of G_{n} isomorphic to a tree T from that set as having the type T (i.e. when we

[^0]talk about the type of a tree in G_{n} we assume it is rooted and maximal). Also, we call a tree T max-admissible if it could be a maximal subtree of G_{n} for large enough n. Let us formulate our main result.

Theorem 1. For max-admissible tree T there is a constant $\rho_{T} \in(0,1)$, such that for any $\delta>0$

$$
N_{T}(n)=\rho_{T} n+o\left(n^{1 / 2+\delta}\right) \quad \text { a.s. }
$$

We would prove this result by induction over b using results about stochastic approximation processes.

Let us first describe these results. An r-dimensional process $Z(n)$ with the corresponding filtration \mathcal{F}_{n} is called a stochastic approximation process if it could be written in the following way

$$
\begin{equation*}
Z(n+1)-Z(n)=\frac{1}{n+1}\left(F(Z(n))+E_{n+1}+R_{n+1}\right) \tag{1}
\end{equation*}
$$

where E_{n}, R_{n}, and the function F satisfy the following conditions (we would provide stronger conditions that are needed for [1, Theorem 3.1.1] to hold). There exists $U \subset \mathbb{R}^{r}$ such that $Z_{n} \in U$ for all n almost surely and
A1 The function $F: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ has a unique root θ in U, and its components are twice continuously differentiable in some neighborhood of U.

A2 The derivative matrix of $F(x)$ exists, and its biggest eigenvalue does not exceed $-1 / 2$.

A3 E_{n} is a martingale difference with respect to $\mathcal{F}_{n}, \sup _{n} \mathbb{E}\left(\left|E_{n+1}\right|^{2} \mid \mathcal{F}_{n}\right)<\infty$ almost surely and for some $\delta \in(0,1 / 2), R_{n}=O\left(n^{-\delta}\right)$ almost surely (i.e. there exists a non-random constant C, such that $\lim \sup _{n \rightarrow \infty} \frac{\left|R_{n}\right|}{n^{-\delta}} \leq C$ almost surely).
We need the following result:
Theorem 2. [1, Theorem 3.1.1] Under the above conditions, $Z(n) \rightarrow \theta$ a.s. with the convergence rate

$$
|Z(n)-\theta|=o\left(n^{-\delta}\right) \quad \text { almost surely }\left(\text { i.e. } \frac{|Z(n)-\theta|}{n^{-\delta}} \rightarrow 0 \text { almost surely }\right) .
$$

1. Number of vertices of fixed degree

First, let prove the case $b=1$, which corresponds to the number $N_{k}(n)$ of vertices with degree k at time n for $k \geq m$ (the tree of depth 1 is a star and defined by the degree of its root). In our model at step $n+1$ probability to draw an edge to a given vertex equals to

$$
\begin{equation*}
1-\frac{\binom{n-1}{m}}{\binom{n}{m}}=1-\frac{n-m}{n}=\frac{m}{n} \tag{2}
\end{equation*}
$$

Let fix $N \in \mathbb{N}, N \geq m$. Let $X_{k}(n):=N_{k}(n) / n, m \leq k \leq N$. Let define

$$
\begin{equation*}
\rho_{k}:=\frac{m^{k-m}}{(m+1)^{k-m+1}}, \quad k=m, \ldots, N . \tag{3}
\end{equation*}
$$

For $b=1$, Theorem 1 could be formulated as follow.

Lemma 1. $X_{k}(n) \rightarrow \rho_{k}$ with rate $\left|X_{k}(n)-\rho_{k}\right|=o\left(n^{-1 / 2+\delta}\right)$ for any $\delta>0$ a.s
Proof. Let \mathcal{F}_{n} be the filtration that corresponds to the graphs G_{n}. We get

$$
\begin{aligned}
\mathbb{E}\left(N_{m}(n+1)-N_{m}(n) \mid \mathcal{F}_{n}\right) & =1-\frac{m}{n} N_{m}(n), \\
\mathbb{E}\left(N_{k}(n+1)-N_{k}(n) \mid \mathcal{F}_{n}\right) & =\frac{m}{n}\left(N_{k-1}(n)-N_{k}(n)\right), \quad k=m+1, \ldots, N .
\end{aligned}
$$

For $X_{k}(n)$ we get

$$
\begin{equation*}
\mathbb{E}\left(X_{k}(n+1)-X_{k}(n) \mid \mathcal{F}_{n}\right)=\frac{1}{n+1}\left(\mathbb{E}\left(N_{k}(n+1)-N_{k}(n) \mid \mathcal{F}_{n}\right)-X_{k}(n)\right) . \tag{4}
\end{equation*}
$$

Hence, if we define functions

$$
\begin{aligned}
f_{m}\left(x_{m}, \ldots, x_{N}\right) & =1-(m+1) x_{m}, \\
f_{k}\left(x_{m}, \ldots, x_{N}\right) & =m x_{k-1}-(m+1) x_{k}, \quad k=m+1, \ldots, N,
\end{aligned}
$$

we would get that for all $k \in[m, N]$,

$$
\begin{equation*}
\mathbb{E}\left(X_{k}(n+1)-X_{k}(n) \mid \mathcal{F}_{n}\right)=\frac{1}{n+1} f_{k}\left(X_{m}(n), \ldots, X_{N}(n)\right) . \tag{5}
\end{equation*}
$$

For the vector $Z(n):=\left(X_{m}(n), \ldots, X_{N}(n)\right)$ we have the following representation

$$
Z(n+1)-Z(n)=\frac{1}{n+1}\left(F(Z(n))+(n+1)\left(Z(n+1)-\mathbb{E}\left(Z(n+1) \mid \mathcal{F}_{n}\right)\right)\right)
$$

where $F\left(x_{m}, \ldots, x_{N}\right)=\left(f_{m}\left(x_{m}, \ldots, x_{N}\right), \ldots, f_{N}\left(x_{m}, \ldots, x_{N}\right)\right)^{t}$. Set

$$
E_{n+1}=(n+1)\left(Z(n+1)-\mathbb{E}\left(Z(n+1) \mid \mathcal{F}_{n}\right)\right), \quad R_{n+1}=0 .
$$

Let us find nulls of the system $F\left(x_{m}, \ldots, x_{N}\right)=0$, i.e. the system

$$
\left\{\begin{array}{ccc}
1-m x_{m} & = & x_{m}, \tag{6}\\
m\left(x_{k-1}-x_{k}\right) & = & x_{k},
\end{array} \quad k=m+1, \ldots, N .\right.
$$

We get

$$
\begin{aligned}
x_{m} & =\frac{1}{m+1} \\
x_{k} & =\frac{m}{m+1} x_{k-1}, \quad k=m+1, \ldots, N .
\end{aligned}
$$

Hence for $k=m+1, \ldots, N$

$$
x_{k}=\frac{m^{k-m}}{(m+1)^{k-m+1}} .
$$

Therefore the system (6) has a unique solution $x_{k}=\rho_{k}, k=m, \ldots, N$. Let us check the conditions of Theorem 2. For non-zero partial derivatives of functions $f_{k}, k=m, \ldots, N$, we would get:

$$
\left\{\begin{array}{cccc}
\frac{\partial f_{m}}{\partial x_{m}}\left(x_{m}, \ldots, x_{d}\right) & = & -m-1, & \tag{7}\\
\frac{\partial f_{k}}{\partial x_{k-1}}\left(x_{m}, \ldots, x_{d}\right) & = & m, & \\
\frac{\partial f_{k}}{\partial x_{k}}\left(x_{m}, \ldots, x_{d}\right) & = & -m-1, & \\
k=m+1, \ldots, N, \\
& k=1, \ldots, N .
\end{array}\right.
$$

Hence, the largest real part of the eigenvalues of the derivative matrix equals -1 . Therefore the process $Z(n)$ satisfies the conditions A1, A2 of Theorem 2. To check condition A3 we first recall that $R_{n+1}=0$. At each step, we draw m edges, so we change degrees of exactly m vertices while adding one new vertex. Hence, $\left|N_{k}(n+1)-N_{k}(n)\right| \leq m+1$ and $\left|X_{k}(n+1)-X_{k}(n)\right| \leq \frac{m+1}{n}$. Therefore, for E_{n+1} we get

$$
\begin{aligned}
\left|E_{n+1}\right| & \leq(n+1)\left(|Z(n+1)-Z(n)|+\left|\mathbb{E}\left(Z(n+1)-Z(n) \mid \mathcal{F}_{n}\right)\right|\right) \\
& \leq 2 \frac{(n+1)(m+1)(N-m+1)}{n},
\end{aligned}
$$

which results in condition $A 3$. By Theorem 2, we get statement of Lemma 1.

2. Number of rooted trees

Now we prove Theorem 1 using induction over tree depth.
Proof. Let us fix $b>1$ and large enough N and consider variables $X_{T}(n):=N_{T}(n) / n$ and vector $Z_{b}(n):=\left(X_{T_{i}}(n)\right)$ over all rooted trees $T_{i} \in \mathcal{T}_{N, b}$ that could be maximal subtrees of G_{n} (there are only finitely many such trees). Note that the case $b=1$ refers to the number of stars and was already considered in Lemma 1. The order of the elements of $Z_{b}(n)$ (or, in other words, the order on the set of all max-admissible trees of depth b) is defined in a way such that the addition of new branches (that preserves the depth of the tree) increases the order.

Note that

$$
\mathbb{E}\left(X_{T}(n+1)-X_{T}(n) \mid \mathcal{F}_{n}\right)=\frac{1}{n+1}\left(\mathbb{E}\left(N_{T}(n+1)-N_{T}(n) \mid \mathcal{F}_{n}\right)-X_{T}(n)\right) .
$$

There are two ways to change $N_{T}(n)$ at time $n+1$. We could draw an edge to a tree of type T or we could create a new copy of T rooted at $n+1$. Recall that due to equation (2) for each given vertex probability to draw an edge to it is $\frac{m}{n}$. In a rooted tree T, fix a non-leaf vertex u. Then the expected number (conditioned on G_{n}) of trees T^{\prime} in G_{n} of type T such that an edge is drawn from $n+1$ to a vertex u^{\prime} of T^{\prime} and there exists an isomorphism of rooted trees $T \rightarrow T^{\prime}$ sending u to u^{\prime} equals

$$
C m \frac{N_{T}(n)}{n}=C m X_{T}(n)
$$

where the constant $C=C(T, u)$ corresponds to the number of vertices that belong to the orbit of u under the action of the automorphism group.

The type of the maximal tree with root $n+1$ is defined by the types of trees of depth $b-1$, to which roots we draw m edges from vertex $n+1$. Note that, due to Lemma 5 of [5], the (conditional) probability to draw edges to trees that share a nonleaf vertex (thus creating a cycle) is $O\left(\frac{\ln ^{2} n}{n}\right)$ almost surely and does not affect our argument. Hence, drawing a given edge to the root of a given tree does not impact (up to $O\left(\frac{\ln ^{2} n}{n}\right)$ error term) probabilities to draw other edges to roots of other trees. Therefore, probability to create a tree of type T in the vertex $n+1$ is polynomial of
$X_{T_{i}}(n)$ up to $O\left(\frac{\ln ^{2} n}{n}\right)$ error term, where T_{i} are max-admissible trees of depth $b-1$. To change a type of a given maximal tree in G_{n} (to another given type) of depth b we need to draw an edge to one of its vertices and draw the rest of the edges to the roots of trees of depth at most $b-2$ of given types (that depends on the given tree type). Such probability is polynomial of $X_{T_{i}}(n)$ up to a term $O\left(\frac{\ln ^{2} n}{n}\right)$, where T_{i} are max-admissible trees of depth $b-2$.

Therefore

$$
\mathbb{E}\left(Z_{b}(n+1)-Z_{b}(n) \mid \mathcal{F}_{n}\right)=\frac{1}{n+1}\left(A_{b} Z_{b}(n)-Z_{b}(n)+Y_{b}+O\left(\frac{\ln ^{2} n}{n}\right)\right)
$$

where $A_{b}=A_{b}\left(Z_{1}(n), \ldots, Z_{b-2}(n)\right)$ is a lower-triangular matrix with negative elements on the diagonal and non-negative under the diagonal and $Y_{b}=Y_{b}\left(Z_{b-1}(n)\right)$ is a vector, such that the elements of both A_{b} and Y_{b} are polynomials of $X_{T_{i}}(n)$, where T_{i} are trees of depth at most $b-2$ (for A_{b}) or exactly $b-1$ (for Y_{b}). Let consider $F_{b}\left(Z_{1}, \ldots, Z_{b}\right):=A_{b} Z_{b}(n)-Z_{b}(n)+Y_{b}$ (note that A_{b} and Y_{b} are functions of Z_{1}, \ldots, Z_{b-1} itself). Note that F_{b} is deterministic. We would use induction over b to prove that there is a unique solution of the system $F_{i}\left(z_{1}, \ldots, z_{i}\right)=0, i=1, \ldots, b$. We already established the existence of the unique (non-zero) root for the case $b=1$. Assume there are unique non-zero solutions $z_{1}^{*}, \ldots, z_{b-1}^{*}$ of the systems $F_{i}\left(z_{1}, \ldots, z_{i}\right)=0, i=1, \ldots, b-1$. If we define $H_{b}\left(z_{b}\right)=F_{b}\left(z_{1}^{*}, \ldots, z_{b-1}^{*}, z_{b}\right)$, then $H_{b}\left(z_{b}\right)=0$ is a system of linear equations with the unique root z_{b}^{*} since A_{b} is lowertriangular with negative elements on the diagonal. Now let us show that all components of z_{b}^{*} are positive. Recall that all elements under the diagonal of A_{b} are non-negative and each (except the first) row has at least one positive element outside the diagonal (if a tree is not the smallest possible, we could remove one vertex with its children from it to make it smaller). All components of $Y_{b}\left(z_{b-1}^{*}, \rho_{d}\right)$ are non-negative as well. Hence it is enough to show that the first element of Y_{b} is positive. It follows from the fact that the smallest max-admissible tree of depth b (which corresponds to the first coordinate of z_{b}) could be obtained by drawing edges from a new vertex to the smallest max-admissible trees of depth $b-1$ and the first coordinate of z_{b-1}^{*} is positive by the induction hypothesis.

Let us consider the vector $W_{b}(n)=\left(Z_{1}(n), \ldots, Z_{b}(n)\right)$. We get that

$$
\mathbb{E}\left(W_{b}(n+1)-W_{b}(n) \mid \mathcal{F}_{n}\right)=\frac{1}{n+1}\left(\left(F_{1}, \ldots, F_{b}\right)+O\left(\frac{\ln ^{2} n}{n}\right)\right) .
$$

The derivative matrix of function $\left(F_{1}, \ldots, F_{b}\right)\left(z_{1}, \ldots, z_{b}\right)$ is of following form. Around the diagonal, it has clusters of derivatives of F_{i} with respect to z_{i}, which are lowertriangular (since $F_{i}=A_{i} z_{i}-z_{i}+Y_{i}$) with diagonal elements at most -1 . Since F_{i} depends only on z_{1}, \ldots, z_{i}, all elements above diagonal clusters are 0 . Therefore the highest eigenvalue of the derivative matrix of $\left(F_{1}, \ldots, F_{b}\right)$ is -1 (for all possible process values). Hence $W_{b}(n)$ satisfies condition A2 of Theorem 2 . Since functions $\left(F_{1}, \ldots, F_{b}\right)$ have second-order derivatives, condition A1 is satisfied as well. To check condition A3 note that if we take

$$
E_{n+1}=(n+1)\left(W_{b}(n+1)-\mathbb{E}\left(W_{b}(n+1) \mid \mathcal{F}_{n}\right)\right)
$$

then

$$
\begin{aligned}
R_{n+1}: & =(n+1)\left(W_{b}(n+1)-W_{b}(n)\right)-\left(F_{1}, \ldots, F_{b}\right)-E_{n+1} \\
& =(n+1) \mathbb{E}\left(W_{b}(n+1)-W_{b}(n) \mid \mathcal{F}_{n}\right)-\left(F_{1}, \ldots, F_{b}\right)=O\left(\frac{\ln ^{2} n}{n}\right) \quad \text { a.s. }
\end{aligned}
$$

and

$$
\left|E_{n+1}\right| \leq(n+1)\left|W_{b}(n+1)-W_{b}(n)\right|+(n+1)\left|\mathbb{E}\left(W_{b}(n+1)-W_{b}(n) \mid \mathcal{F}_{n}\right)\right| \leq C
$$

for some constant C since the number of maximal trees (on at most N vertices) of depth b that the vertex $n+1$ could impact is bounded from above by a constant, which results in condition A3. Therefore, due to Theorem $2 W_{b}(n)$ converges a.s. to $\left(z_{1}^{*}, \ldots, z_{b}^{*}\right)$ with the rate $o\left(n^{-1 / 2+\delta}\right)$ for any $\delta>0$ almost surely.

References

[1] Chen H.F., Stochastic Approximation and Its Applications. V.64, Nonconvex Optimization and its Applications, Springer, New York, 2002, 360 pp., https://doi.org/10.1007/b101987.
[2] Frieze A., Karonski M., Introduction to random graphs, Cambridge University Press, 2016, 478 pp.
[3] Garavaglia A., Preferential attachment models for dynamic networks, Technische Universiteit Eindhoven, 2019, 305 pp.
[4] Malyshkin Y.A., Zhukovskii M.E., "MSO 0-1 law for recursive random trees", Statistics and Probability Letters, 173 (2021), 109061.
[5] Malyshkin Y.A., Zhukovskii M.E., " γ-variable first-order logic of uniform attachment random graphs", Discrete Mathematics, 345:5 (2022), 112802.
[6] Pemantle R., "A survey of random processes with reinforcement", Probability Surveys, 4 (2007), 1-79.

Citation

Malyshkin Y.A., "Number of maximal rooted trees in uniform attachment model via stochastic approximation", Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2022, № 3, 27-34. https://doi.org/10.26456/vtpmk640

Information about Authors

1. Malyshkin Yury Andreyevich

Associate Professor at the Department of Information Technology, Tver State University; senior researcher at Moscow Institute of Physics and Technology.

Russia, 170100, Tver, 33 Zhelyabova str., TverSU. E-mail: yury.malyshkin@mail.ru

ИССЛЕДОВАНИЕ ЧИСЛА МАКСИМАЛЬНЫХ ДЕРЕВЬЕВ В МОДЕЛИ РАВНОМЕРНОГО ПРИСОЕДИНЕНИЯ С ПОМОЩЪЮ СТОХАСТИЧЕСКОЙ АППРОКСИМАЦИИ

Малышкин Ю.А.*,**
*Тверской государственный университет, г. Тверь
**Московский физико-технический институт, г. Москва

Поступила в редакиию 08.08.2022, после переработки 30.08.2022.

В статье исследуется ассимптотическое поведение числа максимальных деревьев в модели графов равномерного присоединения. В предлагаемой модели рассматривается последовательность графов, которая строится по следующему реккурсивному правилу. Мы начинаем построение с полного графа на $m+1$ вершине, $m>1$. Затем на $n+1$-ом шаге мы добавляем вершину $n+1$ и проводим из нее m ребер в разные вершины, выбранные равномерно из вершин $1, \ldots, n$. В статье получен результат о скорости сходимости числа максимальных деревьев в указанной модели с помощью стохастической аппроксимации.
Ключевые слова: случайные графы, равномерное присоединение, стохастическая аппроксимация.

Образец цитирования

Malyshkin Y.A. Number of maximal rooted trees in uniform attachment model via stochastic approximation // Вестник ТвГУ. Серия: Прикладная математика. 2022. № 3. C. 27-34. https://doi.org/10.26456/vtpmk640

Список литературы

[1] Chen H.F. Stochastic Approximation and Its Applications. Series: Nonconvex Optimization and its Applications. Vol. 64. New York: Springer, 2002. 360 p. https://doi.org/10.1007/b101987
[2] Frieze A., Karonski M. Introduction to random graphs. Cambridge University Press, 2016. 478 p.
[3] Garavaglia A. Preferential attachment models for dynamic networks. Technische Universiteit Eindhoven, 2019. 305 p.
[4] Malyshkin Y.A., Zhukovskii M.E. MSO 0-1 law for recursive random trees // Statistics and Probability Letters. 2021. Vol. 173. ID 109061.
[5] Malyshkin Y.A., Zhukovskii M.E. γ-variable first-order logic of uniform attachment random graphs // Discrete Mathematics. 2022. Vol. 345, № 5. ID 112802.
[6] Pemantle R. A survey of random processes with reinforcement // Probability Surveys. 2007. Vol. 4. Pp. 1-79.

[^0]: ${ }^{1}$ The present work was funded by RFBR, project number 19-31-60021.
 (C) Malyshkin Y.A., 2022

