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We study the asymptotic behavior of the number of maximal trees in a
uniform attachment model. In our model, we consider a sequence of graphs
built by the following recursive rule. We start with the complete graph on
m + 1 vertices, m > 1. Then on the n 4 1 step, we add vertex n + 1 and
draw m edges from it to different vertices, chosen uniformly from 1,..., n.
We prove the convergence speed for the number of maximal trees in such a
model using the stochastic approximation technique.
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Introduction

The number of subgraphs of a graph is important in the understanding of the local
structure and properties of the graph and was studied for various graph models (see,
e.g., [2,3]). In the present paper, we are focused on the number of maximal subtrees
(a subtree is mazimal in G,, if all its non-leaf vertices are adjacent only to vertices of
that tree) for a uniform attachment model. While the expected number of subgraphs
is often obtained using combinatorial arguments (see, e.g., [4]) we would use stochastic
approximation (see [1,6] for more details on stochastic approximation processes) to
obtain result about the convergence rate.

Let us describe the model of graphs G,, = G,,(m) that we consider in the paper.
We start with a complete graph G,,, on m vertices. Then on each step, we construct a
graph G,, by adding to G,,—1 a new vertex and drawing m edges from it to different
vertices, chosen uniformly among vertices of G,.

For a rooted tree T, let N (n) be the number of vertices that are roots of maximal
subtrees of G, isomorphic to T'. Note that the set Ty of all isomorphism classes of
rooted trees with at most N vertices of depth b is finite. We would refer to a maximal
subtree of G,, isomorphic to a tree T from that set as having the type T (i.e. when we
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talk about the type of a tree in G,, we assume it is rooted and maximal). Also, we call
a tree 1" maz-admissible if it could be a maximal subtree of G,, for large enough n. Let
us formulate our main result.

Theorem 1. For maz-admissible tree T there is a constant pr € (0,1), such that for
any § >0
Np(n) = prn+o(n'/?%)  a.s.

We would prove this result by induction over b using results about stochastic
approximation processes.

Let us first describe these results. An r-dimensional process Z(n) with the
corresponding filtration F,, is called a stochastic approximation process if it could
be written in the following way

1

Zn+1)—Z(n)= 1 (F(Z(n)) + Epg1 + Rng1), (1)

where E,, R,, and the function F' satisfy the following conditions (we would provide
stronger conditions that are needed for [1, Theorem 3.1.1] to hold). There exists U C R"
such that Z,, € U for all n almost surely and

Al The function F' : R” — R" has a unique root # in U, and its components are
twice continuously differentiable in some neighborhood of U.

A2 The derivative matrix of F(z) exists, and its biggest eigenvalue does not exceed
—1/2.

A3 E, is a martingale difference with respect to F,,, sup,, E(| E,,41]?|Fn) < oo almost

surely and for some & € (0,1/2), R, = O(n~°) almost surely (i.e. there exists a
| R |
n—9o

non-random constant C, such that limsup,,_, ., < C almost surely).

We need the following result:

Theorem 2. [1, Theorem 3.1.1] Under the above conditions, Z(n) — 0 a.s. with the
convergence rate

1Z(n) - 0|

|Z(n) — 6] = o(n™%)  almost surely <i.e. —— — 0 almost surely) .
n

1. Number of vertices of fixed degree

First, let prove the case b = 1, which corresponds to the number Ny (n) of vertices
with degree k at time n for k > m (the tree of depth 1 is a star and defined by the
degree of its root). In our model at step n + 1 probability to draw an edge to a given
vertex equals to

(n—l) n—m m
1-imt g = (2)
() noooon
Let fix N € N, N > m. Let X;(n) := Ni(n)/n, m <k < N. Let define
mkfm
=—F, k=m,...,N. 3

For b = 1, Theorem 1 could be formulated as follow.
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Lemma 1. Xj(n) — pp with rate | Xy(n) — pr| = o(n=1/2%%) for any 6 > 0 a.s.

Proof. Let F,, be the filtration that corresponds to the graphs G,,. We get
E (Nyn(n 4 1) = Nia(n) ) = 1 = =N (),
E(Ny.(n + 1) — Np(n)|F) = % (Ni_1(n) — Ni(n)), k=m+1,...,N.

For X (n) we get
E(Xi(n+1) = Xp(n)|Fn) = %H (E (Nk(n+1) = Np(n)|Fn) = Xi(n)) . (4)
Hence, if we define functions
fm(@my oo yzn) =1 — (m+ Dy,
fe(@m, .. ,xn) =mag—1 — (m+ Dzxg, k=m+1,...,N,
we would get that for all k € [m, N],
1

E(Xp(n+1) — Xip(n)|Fn) = . lfk (Xm(n), ..., Xn(n)). (5)
For the vector Z(n) := (X;n(n),..., Xn(n)) we have the following representation
Z(n+1) = 2(n) = —— (F(Z(0) + (n+ D(Z(n+ 1) = E(Z(n+ DIF))),
where F(Zpm, ..., N) = (fi(@Tmy -y N),y oo oy [N (@ .-y 2N))E Set

Enpr =+ 1)(Zn+1) -E(Z(n+1)|F)), Bnpr =0.

Let us find nulls of the system F(x,,,...,zx) =0, i.e. the system

1 —max,, = Tm, 6)
m(xp—1 —xK) = Xk, k=m+1,...,N.
We get
1
Ty = ——
m m+ 17
m
T = Tp_1, k=m+1,...,N.
m+1
Hence for k=m+1,...,N
mkrfm
Tp = ———————.
(m + 1)k—m+1
Therefore the system (6) has a unique solution xp = pg, k = m, ..., N. Let us check the
conditions of Theorem 2. For non-zero partial derivatives of functions fi, k =m,..., N,
we would get:
%(wm7...,xd) = —-m-1,
axkﬁl( ms 7xd) = m, k_m+17 7N7 (7)
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Hence, the largest real part of the eigenvalues of the derivative matrix equals —1.
Therefore the process Z(n) satisfies the conditions Al,A2 of Theorem 2. To check
condition A3 we first recall that R,.; = 0. At each step, we draw m edges,
so we change degrees of exactly m vertices while adding one new vertex. Hence,
|Nk(n+1) = Ni(n)| <m+1and |Xx(n+1) — Xg(n)| < ™EL Therefore, for E, 41 we
get

[Ens1] < (n+1)([Z(n+1) = Z(n)| + [E(Z(n + 1) = Z(n)|Fn)])
n+1)(m+1)(N-—m+1)

)

<2
n

which results in condition A3. By Theorem 2, we get statement of Lemma 1. O

2. Number of rooted trees

Now we prove Theorem 1 using induction over tree depth.

Proof. Let us fix b > 1 and large enough N and consider variables Xr(n) := Nr(n)/n
and vector Z,(n) := (Xr,(n)) over all rooted trees T; € Ty that could be maximal
subtrees of G,, (there are only finitely many such trees). Note that the case b = 1
refers to the number of stars and was already considered in Lemma 1. The order of the
elements of Z,(n) (or, in other words, the order on the set of all max-admissible trees
of depth b) is defined in a way such that the addition of new branches (that preserves
the depth of the tree) increases the order.
Note that

1

E(Xr(n+1) = Xp(n)|F) = ——

There are two ways to change Np(n) at time n+ 1. We could draw an edge to a tree of
type T or we could create a new copy of T' rooted at n + 1. Recall that due to equation
(2) for each given vertex probability to draw an edge to it is 2. In a rooted tree T, fix
a non-leaf vertex u. Then the expected number (conditioned on G,,) of trees 7" in G,
of type T such that an edge is drawn from n + 1 to a vertex u’ of T’ and there exists
an isomorphism of rooted trees T — T’ sending u to u’ equals

NT(’I’L)

= CmXr(n),

where the constant C' = C(T, u) corresponds to the number of vertices that belong to
the orbit of u under the action of the automorphism group.

The type of the maximal tree with root n + 1 is defined by the types of trees of
depth b — 1, to which roots we draw m edges from vertex n + 1. Note that, due to
Lemma 5 of [5], the (conditional) probability to draw edges to trees that share a non-
leaf vertex (thus creating a cycle) is O(%) almost surely and does not affect our
argument. Hence, drawing a given edge to the root of a given tree does not impact
(up to O(%) error term) probabilities to draw other edges to roots of other trees.
Therefore, probability to create a tree of type T in the vertex n + 1 is polynomial of
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Xr,(n) up to O(%) error term, where T; are max-admissible trees of depth b — 1.
To change a type of a given maximal tree in G,, (to another given type) of depth b
we need to draw an edge to one of its vertices and draw the rest of the edges to the
roots of trees of depth at most b — 2 of given types (that depends on the given tree
type). Such probability is polynomial of X, (n) up to a term O(%), where T; are
max-admissible trees of depth b — 2.

Therefore

B(Zufn +1) ~ 2| F) = — (Abzb<n> ~ Zy(n) + Yi + O (lnzn»

where A, = Ap(Z1(n),..., Zy—2(n)) is a lower-triangular matrix with negative elements
on the diagonal and non-negative under the diagonal and Y, = Yi,(Zp-1(n)) is a
vector, such that the elements of both A, and Y} are polynomials of X7, (n), where
T; are trees of depth at most b — 2 (for A;) or exactly b — 1 (for Y}). Let consider
Fy(Z1,...,2Zy) = ApZp(n) — Zp(n) + Y, (note that A, and Y, are functions of
Zi,...,Zp—1 itself). Note that F, is deterministic. We would use induction over b to
prove that there is a unique solution of the system Fj(zq,...,2;) = 0,4 = 1,...,b.
We already established the existence of the unique (non-zero) root for the case
b = 1. Assume there are unique non-zero solutions zj,...,z;_; of the systems
Fi(z1,...,2;)) = 0,4 = 1,...,b — 1. If we define Hy(z) = Fyp(27,....%_q, %), then
Hy(z) = 0 is a system of linear equations with the unique root z; since A, is lower-
triangular with negative elements on the diagonal. Now let us show that all components
of z; are positive. Recall that all elements under the diagonal of A, are non-negative
and each (except the first) row has at least one positive element outside the diagonal
(if a tree is not the smallest possible, we could remove one vertex with its children
from it to make it smaller). All components of Y;(z;_,,pq) are non-negative as well.
Hence it is enough to show that the first element of Y}, is positive. It follows from the
fact that the smallest max-admissible tree of depth b (which corresponds to the first
coordinate of z,) could be obtained by drawing edges from a new vertex to the smallest
max-admissible trees of depth b — 1 and the first coordinate of z;_; is positive by the
induction hypothesis.
Let us consider the vector Wy(n) = (Z1(n),..., Zp(n)). We get that

1 In®n
E(W, 1) — W, V= —((F,...., )+ 0 .
Wi+ 1) = W)l 2) = g (BB 40 ()
The derivative matrix of function (Fy, ..., Fp)(z1,...,2) is of following form. Around

the diagonal, it has clusters of derivatives of F; with respect to z;, which are lower-
triangular (since F; = A;z; — z; + Y;) with diagonal elements at most —1. Since F;
depends only on zp,...,z;, all elements above diagonal clusters are 0. Therefore the
highest eigenvalue of the derivative matrix of (F},..., Fy) is —1 (for all possible process
values). Hence Wy (n) satisfies condition A2 of Theorem 2. Since functions (F1, ..., Fp)
have second-order derivatives, condition Al is satisfied as well. To check condition A3
note that if we take

Enir=(n+1)(Wy(n+1) - E(Ws(n+ 1)[Fn)),
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then

Ry = (’I’L + 1)(Wb(n + 1) - Wb(n)) - (Fl, S ,Fb) —Eo

= (n+ DEWy(n + 1) — Wy(n)|Fp) — (Fi,...,F) = O (h‘n”> a.s.

and
|Eni1] < (n+ D|We(n+1) = Wy(n)|+ (n+ D)|E(Wp(n+ 1) — Wi(n)|Fn)| < C

for some constant C since the number of maximal trees (on at most N vertices) of
depth b that the vertex m + 1 could impact is bounded from above by a constant,
which results in condition A3. Therefore, due to Theorem 2 Wj(n) converges a.s. to
(2%,...,2;) with the rate o(n='/2%9) for any § > 0 almost surely. O
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NCCJIIEJOBAHUNE YNCJIA MAKCUMAJIBHBIX JTEPEBBEB B
MOJEJIN PABHOMEPHOT O IIPUCOEAVMHEHN: C IIOMOIIIBIO
CTOXACTUYECKOW AIIIIPOKCUMAIINN

Maasnnkua FO.A . 5**
*TBepcKoit TOCYTAPCTBEHHBII YHUBEPCUTET, T. TBEpPH
**MockoBCKUiT (DU3NKO-TEXHUIECKUN WHCTUTYT, T. MocKBa

Hocmynuaa 6 pedaryuro 08.08.2022, nocae nepepabomru 30.08.2022.

B crarbe ucciieayercs acCuMIITOTHYECKOE TIOBEIEHNE YUCIIA MAKCUMAIbHBIX
JIepeBheB B Moean rpadOB PABHOMEPHOTO TPUCOeIUHEHNsA. B mpemrarae-
MOii MOJIEJIM PACCMATPUBAETCS MOCIEI0BATEIHHOCTD TpadOB, KOTOPasi CTPO-
WTCS TIO CIIEIYIONEMY PEKKYPCUBHOMY MpaBuiTy. Mbl HaumHAeM TOCTPOEHNE
¢ moaoro rpada Ha m + 1 Bepinuae, m > 1. 3arem Ha n + 1-0M mare Mbl
o0baBsisieM BepIuHy n+ 1 u npoBoauM U3 Hee M pedep B Pa3HbIe BEPIIUHbI,
BBIOPAHHBIE PABHOMEPHO W3 BEPIIWH 1, ..., n. B crarbe nmomyden pesyabrar
O CKOPOCTH CXOJUMOCTH YHUCJIA MAKCUMAJIHHBIX JIEPEBHEB B YKA3aHHON MO-
JIeJTA ¢ TTIOMOIIBI0 CTOXACTHIECKON almpPOKCAMAIINH.

KurrogyeBbie cioBa: ciyuaiiabie rpadbl, paBHOMEPHOE TPUCOEIUHEHUE,
CTOXaCTUYeCKas alllIPOKCUMAIINS.
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