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We study the asymptotic behavior of the number of maximal trees in a
uniform attachment model. In our model, we consider a sequence of graphs
built by the following recursive rule. We start with the complete graph on
𝑚 + 1 vertices, 𝑚 > 1. Then on the 𝑛 + 1 step, we add vertex 𝑛 + 1 and
draw 𝑚 edges from it to different vertices, chosen uniformly from 1, . . . , 𝑛.
We prove the convergence speed for the number of maximal trees in such a
model using the stochastic approximation technique.
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Introduction

The number of subgraphs of a graph is important in the understanding of the local
structure and properties of the graph and was studied for various graph models (see,
e.g., [2, 3]). In the present paper, we are focused on the number of maximal subtrees
(a subtree is maximal in 𝐺𝑛 if all its non-leaf vertices are adjacent only to vertices of
that tree) for a uniform attachment model. While the expected number of subgraphs
is often obtained using combinatorial arguments (see, e.g., [4]) we would use stochastic
approximation (see [1, 6] for more details on stochastic approximation processes) to
obtain result about the convergence rate.

Let us describe the model of graphs 𝐺𝑛 = 𝐺𝑛(𝑚) that we consider in the paper.
We start with a complete graph 𝐺𝑚 on 𝑚 vertices. Then on each step, we construct a
graph 𝐺𝑛 by adding to 𝐺𝑛−1 a new vertex and drawing 𝑚 edges from it to different
vertices, chosen uniformly among vertices of 𝐺𝑛.

For a rooted tree 𝑇 , let 𝑁𝑇 (𝑛) be the number of vertices that are roots of maximal
subtrees of 𝐺𝑛 isomorphic to 𝑇 . Note that the set 𝒯𝑁,𝑏 of all isomorphism classes of
rooted trees with at most 𝑁 vertices of depth 𝑏 is finite. We would refer to a maximal
subtree of 𝐺𝑛 isomorphic to a tree 𝑇 from that set as having the type 𝑇 (i.e. when we
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talk about the type of a tree in 𝐺𝑛 we assume it is rooted and maximal). Also, we call
a tree 𝑇 max-admissible if it could be a maximal subtree of 𝐺𝑛 for large enough 𝑛. Let
us formulate our main result.

Theorem 1. For max-admissible tree 𝑇 there is a constant 𝜌𝑇 ∈ (0, 1), such that for
any 𝛿 > 0

𝑁𝑇 (𝑛) = 𝜌𝑇𝑛+ 𝑜(𝑛1/2+𝛿) a.s.

We would prove this result by induction over 𝑏 using results about stochastic
approximation processes.

Let us first describe these results. An 𝑟-dimensional process 𝑍(𝑛) with the
corresponding filtration ℱ𝑛 is called a stochastic approximation process if it could
be written in the following way

𝑍(𝑛+ 1) − 𝑍(𝑛) =
1

𝑛+ 1
(𝐹 (𝑍(𝑛)) + 𝐸𝑛+1 +𝑅𝑛+1) , (1)

where 𝐸𝑛, 𝑅𝑛, and the function 𝐹 satisfy the following conditions (we would provide
stronger conditions that are needed for [1, Theorem 3.1.1] to hold). There exists 𝑈 ⊂ R𝑟

such that 𝑍𝑛 ∈ 𝑈 for all 𝑛 almost surely and

A1 The function 𝐹 : R𝑟 → R𝑟 has a unique root 𝜃 in 𝑈 , and its components are
twice continuously differentiable in some neighborhood of 𝑈 .

A2 The derivative matrix of 𝐹 (𝑥) exists, and its biggest eigenvalue does not exceed
−1/2.

A3 𝐸𝑛 is a martingale difference with respect to ℱ𝑛, sup𝑛 E(|𝐸𝑛+1|2|ℱ𝑛) <∞ almost
surely and for some 𝛿 ∈ (0, 1/2), 𝑅𝑛 = 𝑂(𝑛−𝛿) almost surely (i.e. there exists a
non-random constant 𝐶, such that lim sup𝑛→∞

|𝑅𝑛|
𝑛−𝛿 ≤ 𝐶 almost surely).

We need the following result:

Theorem 2. [1, Theorem 3.1.1] Under the above conditions, 𝑍(𝑛) → 𝜃 a.s. with the
convergence rate

|𝑍(𝑛) − 𝜃| = 𝑜(𝑛−𝛿) almost surely

(︂
i.e.

|𝑍(𝑛) − 𝜃|
𝑛−𝛿

→ 0 almost surely

)︂
.

1. Number of vertices of fixed degree

First, let prove the case 𝑏 = 1, which corresponds to the number 𝑁𝑘(𝑛) of vertices
with degree 𝑘 at time 𝑛 for 𝑘 ≥ 𝑚 (the tree of depth 1 is a star and defined by the
degree of its root). In our model at step 𝑛 + 1 probability to draw an edge to a given
vertex equals to

1 −
(︀
𝑛−1
𝑚

)︀(︀
𝑛
𝑚

)︀ = 1 − 𝑛−𝑚

𝑛
=
𝑚

𝑛
. (2)

Let fix 𝑁 ∈ N, 𝑁 ≥ 𝑚. Let 𝑋𝑘(𝑛) := 𝑁𝑘(𝑛)/𝑛, 𝑚 ≤ 𝑘 ≤ 𝑁 . Let define

𝜌𝑘 :=
𝑚𝑘−𝑚

(𝑚+ 1)𝑘−𝑚+1
, 𝑘 = 𝑚, . . . , 𝑁. (3)

For 𝑏 = 1, Theorem 1 could be formulated as follow.
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Lemma 1. 𝑋𝑘(𝑛) → 𝜌𝑘 with rate |𝑋𝑘(𝑛) − 𝜌𝑘| = 𝑜(𝑛−1/2+𝛿) for any 𝛿 > 0 a.s.

Proof. Let ℱ𝑛 be the filtration that corresponds to the graphs 𝐺𝑛. We get

E (𝑁𝑚(𝑛+ 1) −𝑁𝑚(𝑛)|ℱ𝑛) = 1 − 𝑚

𝑛
𝑁𝑚(𝑛),

E (𝑁𝑘(𝑛+ 1) −𝑁𝑘(𝑛)|ℱ𝑛) =
𝑚

𝑛
(𝑁𝑘−1(𝑛) −𝑁𝑘(𝑛)) , 𝑘 = 𝑚+ 1, . . . , 𝑁.

For 𝑋𝑘(𝑛) we get

E (𝑋𝑘(𝑛+ 1) −𝑋𝑘(𝑛)|ℱ𝑛) =
1

𝑛+ 1
(E (𝑁𝑘(𝑛+ 1) −𝑁𝑘(𝑛)|ℱ𝑛) −𝑋𝑘(𝑛)) . (4)

Hence, if we define functions

𝑓𝑚(𝑥𝑚, . . . , 𝑥𝑁 ) = 1 − (𝑚+ 1)𝑥𝑚,

𝑓𝑘(𝑥𝑚, . . . , 𝑥𝑁 ) = 𝑚𝑥𝑘−1 − (𝑚+ 1)𝑥𝑘, 𝑘 = 𝑚+ 1, . . . , 𝑁,

we would get that for all 𝑘 ∈ [𝑚,𝑁 ],

E (𝑋𝑘(𝑛+ 1) −𝑋𝑘(𝑛)|ℱ𝑛) =
1

𝑛+ 1
𝑓𝑘 (𝑋𝑚(𝑛), . . . , 𝑋𝑁 (𝑛)) . (5)

For the vector 𝑍(𝑛) := (𝑋𝑚(𝑛), . . . , 𝑋𝑁 (𝑛)) we have the following representation

𝑍(𝑛+ 1) − 𝑍(𝑛) =
1

𝑛+ 1
(𝐹 (𝑍(𝑛)) + (𝑛+ 1)(𝑍(𝑛+ 1) − E(𝑍(𝑛+ 1)|ℱ𝑛))) ,

where 𝐹 (𝑥𝑚, . . . , 𝑥𝑁 ) = (𝑓𝑚(𝑥𝑚, . . . , 𝑥𝑁 ), . . . , 𝑓𝑁 (𝑥𝑚, . . . , 𝑥𝑁 ))𝑡. Set

𝐸𝑛+1 = (𝑛+ 1)(𝑍(𝑛+ 1) − E(𝑍(𝑛+ 1)|ℱ𝑛)), 𝑅𝑛+1 = 0.

Let us find nulls of the system 𝐹 (𝑥𝑚, . . . , 𝑥𝑁 ) = 0, i.e. the system{︂
1 −𝑚𝑥𝑚 = 𝑥𝑚,

𝑚(𝑥𝑘−1 − 𝑥𝑘) = 𝑥𝑘, 𝑘 = 𝑚+ 1, . . . , 𝑁.
(6)

We get

𝑥𝑚 =
1

𝑚+ 1
,

𝑥𝑘 =
𝑚

𝑚+ 1
𝑥𝑘−1, 𝑘 = 𝑚+ 1, . . . , 𝑁.

Hence for 𝑘 = 𝑚+ 1, . . . , 𝑁

𝑥𝑘 =
𝑚𝑘−𝑚

(𝑚+ 1)𝑘−𝑚+1
.

Therefore the system (6) has a unique solution 𝑥𝑘 = 𝜌𝑘, 𝑘 = 𝑚, . . . , 𝑁 . Let us check the
conditions of Theorem 2. For non-zero partial derivatives of functions 𝑓𝑘, 𝑘 = 𝑚, . . . , 𝑁 ,
we would get:⎧⎪⎨⎪⎩

𝜕𝑓𝑚
𝜕𝑥𝑚

(𝑥𝑚, . . . , 𝑥𝑑) = −𝑚− 1,
𝜕𝑓𝑘

𝜕𝑥𝑘−1
(𝑥𝑚, . . . , 𝑥𝑑) = 𝑚, 𝑘 = 𝑚+ 1, . . . , 𝑁,

𝜕𝑓𝑘
𝜕𝑥𝑘

(𝑥𝑚, . . . , 𝑥𝑑) = −𝑚− 1, 𝑘 = 𝑚+ 1, . . . , 𝑁.

(7)



30 MALYSHKIN Y.A.

Hence, the largest real part of the eigenvalues of the derivative matrix equals −1.
Therefore the process 𝑍(𝑛) satisfies the conditions A1,A2 of Theorem 2. To check
condition A3 we first recall that 𝑅𝑛+1 = 0. At each step, we draw 𝑚 edges,
so we change degrees of exactly 𝑚 vertices while adding one new vertex. Hence,
|𝑁𝑘(𝑛+ 1)−𝑁𝑘(𝑛)| ≤ 𝑚+ 1 and |𝑋𝑘(𝑛+ 1)−𝑋𝑘(𝑛)| ≤ 𝑚+1

𝑛 . Therefore, for 𝐸𝑛+1 we
get

|𝐸𝑛+1| ≤ (𝑛+ 1) (|𝑍(𝑛+ 1) − 𝑍(𝑛)| + |E(𝑍(𝑛+ 1) − 𝑍(𝑛)|ℱ𝑛)|)

≤ 2
(𝑛+ 1)(𝑚+ 1)(𝑁 −𝑚+ 1)

𝑛
,

which results in condition 𝐴3. By Theorem 2, we get statement of Lemma 1.

2. Number of rooted trees

Now we prove Theorem 1 using induction over tree depth.

Proof. Let us fix 𝑏 > 1 and large enough 𝑁 and consider variables 𝑋𝑇 (𝑛) := 𝑁𝑇 (𝑛)/𝑛
and vector 𝑍𝑏(𝑛) := (𝑋𝑇𝑖(𝑛)) over all rooted trees 𝑇𝑖 ∈ 𝒯𝑁,𝑏 that could be maximal
subtrees of 𝐺𝑛 (there are only finitely many such trees). Note that the case 𝑏 = 1
refers to the number of stars and was already considered in Lemma 1. The order of the
elements of 𝑍𝑏(𝑛) (or, in other words, the order on the set of all max-admissible trees
of depth 𝑏) is defined in a way such that the addition of new branches (that preserves
the depth of the tree) increases the order.

Note that

E(𝑋𝑇 (𝑛+ 1) −𝑋𝑇 (𝑛)|ℱ𝑛) =
1

𝑛+ 1
(E(𝑁𝑇 (𝑛+ 1) −𝑁𝑇 (𝑛)|ℱ𝑛) −𝑋𝑇 (𝑛)) .

There are two ways to change 𝑁𝑇 (𝑛) at time 𝑛+ 1. We could draw an edge to a tree of
type 𝑇 or we could create a new copy of 𝑇 rooted at 𝑛+ 1. Recall that due to equation
(2) for each given vertex probability to draw an edge to it is 𝑚

𝑛 . In a rooted tree 𝑇 , fix
a non-leaf vertex 𝑢. Then the expected number (conditioned on 𝐺𝑛) of trees 𝑇 ′ in 𝐺𝑛

of type 𝑇 such that an edge is drawn from 𝑛+ 1 to a vertex 𝑢′ of 𝑇 ′ and there exists
an isomorphism of rooted trees 𝑇 → 𝑇 ′ sending 𝑢 to 𝑢′ equals

𝐶𝑚
𝑁𝑇 (𝑛)

𝑛
= 𝐶𝑚𝑋𝑇 (𝑛),

where the constant 𝐶 = 𝐶(𝑇, 𝑢) corresponds to the number of vertices that belong to
the orbit of 𝑢 under the action of the automorphism group.

The type of the maximal tree with root 𝑛 + 1 is defined by the types of trees of
depth 𝑏 − 1, to which roots we draw 𝑚 edges from vertex 𝑛 + 1. Note that, due to
Lemma 5 of [5], the (conditional) probability to draw edges to trees that share a non-
leaf vertex (thus creating a cycle) is 𝑂( ln2 𝑛

𝑛 ) almost surely and does not affect our
argument. Hence, drawing a given edge to the root of a given tree does not impact
(up to 𝑂( ln2 𝑛

𝑛 ) error term) probabilities to draw other edges to roots of other trees.
Therefore, probability to create a tree of type 𝑇 in the vertex 𝑛 + 1 is polynomial of
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𝑋𝑇𝑖
(𝑛) up to 𝑂( ln2 𝑛

𝑛 ) error term, where 𝑇𝑖 are max-admissible trees of depth 𝑏 − 1.
To change a type of a given maximal tree in 𝐺𝑛 (to another given type) of depth 𝑏
we need to draw an edge to one of its vertices and draw the rest of the edges to the
roots of trees of depth at most 𝑏 − 2 of given types (that depends on the given tree
type). Such probability is polynomial of 𝑋𝑇𝑖

(𝑛) up to a term 𝑂( ln2 𝑛
𝑛 ), where 𝑇𝑖 are

max-admissible trees of depth 𝑏− 2.
Therefore

E(𝑍𝑏(𝑛+ 1) − 𝑍𝑏(𝑛)|ℱ𝑛) =
1

𝑛+ 1

(︂
𝐴𝑏𝑍𝑏(𝑛) − 𝑍𝑏(𝑛) + 𝑌𝑏 +𝑂

(︂
ln2 𝑛

𝑛

)︂)︂
where 𝐴𝑏 = 𝐴𝑏(𝑍1(𝑛), . . . , 𝑍𝑏−2(𝑛)) is a lower-triangular matrix with negative elements
on the diagonal and non-negative under the diagonal and 𝑌𝑏 = 𝑌𝑏(𝑍𝑏−1(𝑛)) is a
vector, such that the elements of both 𝐴𝑏 and 𝑌𝑏 are polynomials of 𝑋𝑇𝑖

(𝑛), where
𝑇𝑖 are trees of depth at most 𝑏 − 2 (for 𝐴𝑏) or exactly 𝑏 − 1 (for 𝑌𝑏). Let consider
𝐹𝑏(𝑍1, . . . , 𝑍𝑏) := 𝐴𝑏𝑍𝑏(𝑛) − 𝑍𝑏(𝑛) + 𝑌𝑏 (note that 𝐴𝑏 and 𝑌𝑏 are functions of
𝑍1, . . . , 𝑍𝑏−1 itself). Note that 𝐹𝑏 is deterministic. We would use induction over 𝑏 to
prove that there is a unique solution of the system 𝐹𝑖(𝑧1, . . . , 𝑧𝑖) = 0, 𝑖 = 1, . . . , 𝑏.
We already established the existence of the unique (non-zero) root for the case
𝑏 = 1. Assume there are unique non-zero solutions 𝑧*1 , . . . , 𝑧

*
𝑏−1 of the systems

𝐹𝑖(𝑧1, . . . , 𝑧𝑖) = 0, 𝑖 = 1, . . . , 𝑏 − 1. If we define 𝐻𝑏(𝑧𝑏) = 𝐹𝑏(𝑧
*
1 , . . . , 𝑧

*
𝑏−1, 𝑧𝑏), then

𝐻𝑏(𝑧𝑏) = 0 is a system of linear equations with the unique root 𝑧*𝑏 since 𝐴𝑏 is lower-
triangular with negative elements on the diagonal. Now let us show that all components
of 𝑧*𝑏 are positive. Recall that all elements under the diagonal of 𝐴𝑏 are non-negative
and each (except the first) row has at least one positive element outside the diagonal
(if a tree is not the smallest possible, we could remove one vertex with its children
from it to make it smaller). All components of 𝑌𝑏(𝑧*𝑏−1, 𝜌𝑑) are non-negative as well.
Hence it is enough to show that the first element of 𝑌𝑏 is positive. It follows from the
fact that the smallest max-admissible tree of depth 𝑏 (which corresponds to the first
coordinate of 𝑧𝑏) could be obtained by drawing edges from a new vertex to the smallest
max-admissible trees of depth 𝑏− 1 and the first coordinate of 𝑧*𝑏−1 is positive by the
induction hypothesis.

Let us consider the vector 𝑊𝑏(𝑛) = (𝑍1(𝑛), . . . , 𝑍𝑏(𝑛)). We get that

E(𝑊𝑏(𝑛+ 1) −𝑊𝑏(𝑛)|ℱ𝑛) =
1

𝑛+ 1

(︂
(𝐹1, . . . , 𝐹𝑏) +𝑂

(︂
ln2 𝑛

𝑛

)︂)︂
.

The derivative matrix of function (𝐹1, . . . , 𝐹𝑏)(𝑧1, . . . , 𝑧𝑏) is of following form. Around
the diagonal, it has clusters of derivatives of 𝐹𝑖 with respect to 𝑧𝑖, which are lower-
triangular (since 𝐹𝑖 = 𝐴𝑖𝑧𝑖 − 𝑧𝑖 + 𝑌𝑖) with diagonal elements at most −1. Since 𝐹𝑖

depends only on 𝑧1, . . . , 𝑧𝑖, all elements above diagonal clusters are 0. Therefore the
highest eigenvalue of the derivative matrix of (𝐹1, . . . , 𝐹𝑏) is −1 (for all possible process
values). Hence 𝑊𝑏(𝑛) satisfies condition A2 of Theorem 2. Since functions (𝐹1, . . . , 𝐹𝑏)
have second-order derivatives, condition A1 is satisfied as well. To check condition A3
note that if we take

𝐸𝑛+1 = (𝑛+ 1)(𝑊𝑏(𝑛+ 1) − E(𝑊𝑏(𝑛+ 1)|ℱ𝑛)),
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then

𝑅𝑛+1 : = (𝑛+ 1)(𝑊𝑏(𝑛+ 1) −𝑊𝑏(𝑛)) − (𝐹1, . . . , 𝐹𝑏) − 𝐸𝑛+1

= (𝑛+ 1)E(𝑊𝑏(𝑛+ 1) −𝑊𝑏(𝑛)|ℱ𝑛) − (𝐹1, . . . , 𝐹𝑏) = 𝑂

(︂
ln2 𝑛

𝑛

)︂
a.s.

and

|𝐸𝑛+1| ≤ (𝑛+ 1)|𝑊𝑏(𝑛+ 1) −𝑊𝑏(𝑛)| + (𝑛+ 1)|E(𝑊𝑏(𝑛+ 1) −𝑊𝑏(𝑛)|ℱ𝑛)| ≤ 𝐶

for some constant 𝐶 since the number of maximal trees (on at most 𝑁 vertices) of
depth 𝑏 that the vertex 𝑛 + 1 could impact is bounded from above by a constant,
which results in condition A3. Therefore, due to Theorem 2 𝑊𝑏(𝑛) converges a.s. to
(𝑧*1 , . . . , 𝑧

*
𝑏 ) with the rate 𝑜(𝑛−1/2+𝛿) for any 𝛿 > 0 almost surely.
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СТОХАСТИЧЕСКОЙ АППРОКСИМАЦИИ
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В статье исследуется ассимптотическое поведение числа максимальных
деревьев в модели графов равномерного присоединения. В предлагае-
мой модели рассматривается последовательность графов, которая стро-
ится по следующему реккурсивному правилу. Мы начинаем построение
с полного графа на 𝑚+ 1 вершине, 𝑚 > 1. Затем на 𝑛+ 1-ом шаге мы
добавляем вершину 𝑛+1 и проводим из нее 𝑚 ребер в разные вершины,
выбранные равномерно из вершин 1, . . . , 𝑛. В статье получен результат
о скорости сходимости числа максимальных деревьев в указанной мо-
дели с помощью стохастической аппроксимации.

Ключевые слова: случайные графы, равномерное присоединение,
стохастическая аппроксимация.
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