УДК 544.42 DOI 10.26456/vtchem2022.3.6

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ КИНЕТИКИ ЖИДКОФАЗНОГО СИНТЕЗА ФИШЕРА-ТРОПША

М.Е. Маркова, А.А. Степачёва, М.Г. Сульман

ФГБОУ ВО «Тверской государственный технический университет», г. Тверь

Моделирование процесса синтеза Фишера-Тропша является довольно сложным. Существует большое разнообразие кинетических моделей, которые были разработаны для описания реакции синтеза Фишера-Тропша. В данной статье приводится математическая модель процесса, описывающая начальный период расходования СО и образования основных продуктов в присутствии железо-рутений содержащего катализатора на основе сверхсшитого полистирола.

Ключевые слова: синтез-газ, синтез Фишера-Тропша, математическая модель, кинетика.

Технология синтеза Фишера-Тропша является перспективной для производства коммерческих синтетических топлив (в основном бензина, дизельного топлива и реактивного топлива). Синтез Фишера-Тропша привлекает внимание научного и промышленного сообщества [1]. Моделирование процесса синтеза Фишера-Тропша является довольно сложным из-за трудности прогнозирования распределения продуктов [2]. Существует большое разнообразие кинетических моделей, которые были разработаны для описания реакции синтеза Фишера-Тропша. Некоторые авторы предложили простые кинетические модели, которые являются функцией парциальных давлений синтез-газа [3], общего давления [4], занятости поверхности катализатора реагентами и продуктами, которые аппроксимируются изотермами Фрейндлиха [5], включают реакцию адсорбированного водорода с адсорбированным СО, в которой адсорбция водорода является лимитирующей стадией [6], учитывающих реакцию водяного газа [7] и т.д.

В данной статье приводится математическая модель процесса, описывающая начальный период расходования СО и образования основных продуктов. В ранних работах мы показали эффективность железо-рутений содержащего катализатора на основе сверхсшитого полистирола в процессе жидкофазного синтеза Фишера-Тропша в среде н-додекана [8]. В работе [9] были определены основные кинетические закономерности процесса в присутствии указанного катализатора.

Для вывода математической модели кинетики жидкофазного процесса синтеза Фишера-Тропша в присутствии Ru-Fe-СПС

© Маркова М.Е., Степачёва А.А., Сульман М.Г., 2022 катализатора были введены следующие допущения:

1. Синтез продуктов (алканов, алкенов) осуществляется одинаково на Ru^{4+} и Fe²⁺ активных центрах катализатора.

2. Оксигенаты образуются только на железосодержащих активных центрах.

3. Алканы являются основными продуктами синтеза.

4. Реакцией конверсии водяного газа можно пренебречь.

5. Скорость элементарных реакций образования поверхностных интермедиатов намного выше скорости их взаимодействия.

6. Скорость процесса лимитируется скоростью стадии роста цепи.

7. Образование алканов лимитируется 11 атомами углерода в молекуле.

8. Дезактивацией катализатора можно пренебречь.

9. За основу можно взять модель Ленгмюра-Хиншельвуда.

10. Вторичными процессами (гидрирование алкенов, гидрирование оксигенатов и т.д.) можно пренебречь.

11. Продукты сорбируются в намного меньшей степени, чем реагенты, поэтому процессом десорбции можно пренебречь.

12. Скорости роста цепи и образования продуктов (алканов, алкенов и т.д.) для различных значений n (число атомов углерода) неодинаковы.

Предположим следующие элементарные стадии процесса, представленные в табл. 1.

Таблица 1

в присутствии ки-ге-СПС катализатора						
Стадия	Уравнение стадии					
1. Абсорбция	$CO \xleftarrow{K_{CO}} CO'$					
(растворение) компонентов	K					
синтез-газа в додекане	$H_2 \longleftrightarrow H_2'$					
2. Адсорбция	$CO'+S \xleftarrow{K_1} COS$					
растворенных молекул на						
активных центрах	$H_2'+2S \longleftrightarrow^{K_2} 2H \dots S$					
3. Взаимодействие	$COS + 2HS \xleftarrow{K_3} H_2COS + 2S$					
адсорбированных на						
активных центрах молекул						
с образованием						
гидроксикарбена						
4. Гидрирование	$H_{2}COS + H_{2}' \xleftarrow{K_{4}} CH_{2}S + H_{2}O$					
гидроксикарбена с						
образованием карбеновой						
единицы						

Элементарные стадии процесса синтеза Фишера-Тропша в присутствии Ru-Fe-СПС катализатора

Вестник Тверского государственного университета. Серия «Химия». 2022. № 3 (49)

5 F	
5. Гидрирование кароена	$CH_2S+HS \xrightarrow{\kappa_1} CH_3S+S$
(стадия зарождения цепи)	
6. Образование метана	$CH_3S + HS \xrightarrow{k_2} CH_4 + 2S$
7. Рост цепи	$C_nH_{2n+1}\ldots S+CH_2\ldots S \xrightarrow{k_3} C_{n+1}H_{2(n+1)+1}\ldots S+$
8. Обрыв цепи	CH $S+H$ $S-\frac{k_4}{2}$ CH $+2S$
(образование алканов)	$C_n m_{2n+1} \dots S + m \dots S$ $C_n m_{2n+2} + 2S$
9. Обрыв цепи	CH $S \xrightarrow{k_5} CH + H S$
(образование алкенов)	$C_n II_{2n+1} \dots S$ $C_n II_{2n} + II \dots S$
10. Образование	$H_{*}CO = S + H = S \xleftarrow{K'} H_{*}CO = S + S$
оксигенатной единицы на	
железосодержащих	
активных центрах	
11. Рост цепи	$H_2 \cup C \cup O \cup S + CO' \xrightarrow{k'_1} H_2 \cup O_2 \cup S$
железосодержащих	2n+1 - n - 2(n+1)+1 - n+1 - 2
активных центрах	
12. Обрыв цепи	H_{2} , C , O , $S + H$, $S \xrightarrow{k'_{2}} C$, H_{2} , $O + 2S$
(образование спиртов и	$\sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n$
простых эфиров)	
железосодержащих	
активных центрах	
13. Обрыв цепи	H_2 , C , O_2 , $S + H_1$, $S \xrightarrow{k'_3} C$, H_2 , $O_2 + 2S$
(образование кислот и	$\sum_{2n-1} \sum_{n \in \mathbb{Z}} \sum_{2n-1} \sum_{n \in \mathbb{Z}} \sum_{n \in \mathbb{Z}$
сложных эфиров)	
железосодержащих	
активных центрах	

Предполагая стационарность концентраций растворенных молекул, и учитывая, что [CO']<<[CO]₀ и [H₂']<<[H₂]₀, получим уравнения, описывающие концентрации абсорбированных компонентов синтез-газа (1):

$$\begin{bmatrix} CO' \end{bmatrix} = K_{CO} \cdot \begin{bmatrix} CO \end{bmatrix}_0 \\ \begin{bmatrix} H_2' \end{bmatrix} = K_{H_2} \cdot \begin{bmatrix} H_2 \end{bmatrix}_0$$
(1)

Концентрации молекул, адсорбированных на активных центрах, будут описываться уравнением 2:

$$\begin{bmatrix} CO \dots S \end{bmatrix} = K_1 \cdot \begin{bmatrix} CO' \end{bmatrix} \cdot \begin{bmatrix} S \end{bmatrix} = K_1 \cdot K_{CO} \cdot \begin{bmatrix} CO \end{bmatrix}_0 \cdot \begin{bmatrix} S \end{bmatrix}$$
$$\begin{bmatrix} H \dots S \end{bmatrix} = \left(K_2 \cdot \begin{bmatrix} H_2' \end{bmatrix} \cdot \begin{bmatrix} S \end{bmatrix}^2 \right)^{1/2} = \left(K_2 \cdot K_{H_2} \cdot \begin{bmatrix} H_2 \end{bmatrix}_0 \right)^{1/2} \cdot \begin{bmatrix} S \end{bmatrix}$$
(2)

Равновесная концентрация гидроксикарбеновой единицы с учетом уравнения 2 будет описываться с помощью уравнения 3:

Вестник Тверского государственного университета. Серия «Химия». 2022. № 3 (49)

$$[H_{2}CO...S] = K_{3} \cdot [CO...S] \cdot [H...S]^{2} \div [S]^{2} =$$

= $K_{1} \cdot K_{2} \cdot K_{3} \cdot K_{CO} \cdot K_{H_{2}} \cdot [CO]_{0} \cdot [H_{2}]_{0} \cdot [S] = \frac{[CH_{2}...S] \cdot [H_{2}O]}{K_{4} \cdot [H_{2}']} + \frac{[H_{3}CO...S]}{K' \cdot [H...S]}$ (3)

Концентрация карбеновой и оксигенатной единиц (4):

$$\begin{bmatrix} CH_2 \dots S \end{bmatrix} = \frac{K_4 \cdot \begin{bmatrix} H_2 CO \dots S \end{bmatrix} \cdot \begin{bmatrix} H_2 ' \end{bmatrix}}{\begin{bmatrix} H_2 O \end{bmatrix}}$$
(4)
$$\begin{bmatrix} H_3 CO \dots S \end{bmatrix} = K' \cdot \begin{bmatrix} H_2 CO \dots S \end{bmatrix} \cdot \begin{bmatrix} H \dots S \end{bmatrix}$$

При этом $K_4 \neq K'$. С учетом уравнений 2 и 3 получим (5)

$$\begin{bmatrix} CH_{2} \dots S \end{bmatrix} = \frac{K_{1} \cdot K_{2} \cdot K_{3} \cdot K_{4} \cdot K_{CO} \cdot K^{2}_{H_{2}} \cdot [CO]_{0} \cdot [H_{2}]_{0}^{2} \cdot [S]}{[H_{2}O]}$$
(5)
$$\begin{bmatrix} H_{3}CO \dots S \end{bmatrix} = K' \cdot K_{1} \cdot K_{2}^{1,5} \cdot K_{3} \cdot K_{CO} \cdot K^{1,5}_{H_{2}} \cdot [CO]_{0} \cdot [H_{2}]_{0}^{1,5} \cdot [S]^{2}$$

Скорость образования метила / алкила будет описываться уравнениями 6 и 8. Подставляя в (5) значения из уравнений 2 и 4, получим выражение для концентрации метила (7). При выводе концентрации алкила из уравнения 8 получим (9).

$$\frac{d[CH_{3}...S]}{dt} = k_{1} \cdot [CH_{2}...S] \cdot [H...S] - k_{2}[CH_{3}...S] \cdot [H...S] - k_{3}[CH_{2}...S] \cdot [CH_{3}...S] = 0$$

$$[CH_{3}...S] = \frac{k_{1} \cdot [CH_{2}...S] \cdot [H...S]}{k_{2} \cdot [H...S] + k_{3}[CH_{2}...S]} = \frac{k_{1} \cdot K_{2}^{0.5} \cdot K_{H_{2}}^{0.5} \cdot [H_{2}]_{0}^{0.5} \cdot [S]}{k_{2} \cdot P_{H_{2}O}}$$
(6)
$$(7)$$

$$\begin{bmatrix}
I + \frac{1}{k_{3} \cdot K_{1} \cdot K_{2}^{0.5} \cdot K_{3} \cdot K_{4} \cdot K_{CO} \cdot K_{H_{2}}^{1.5} \cdot [CO]_{0} \cdot [H_{2}]_{0}^{1.5} \\
\frac{d[C_{n}H_{2n+1} \dots S]}{dt} = k_{3} \cdot [CH_{2} \dots S] \cdot [C_{n-1}H_{2(n-1)+1} \dots S] - \\
-k_{3}[C_{n}H_{2n+1} \dots S] \cdot [CH_{2} \dots S] - k_{4}[H \dots S] \cdot [C_{n}H_{2n+1} \dots S] - k_{5} \cdot [C_{n}H_{2n+1} \dots S] = 0 \\
[C_{n}H_{2n+1} \dots S] = \frac{k_{3} \cdot [CH_{2} \dots S] \cdot [C_{n-1}H_{2(n-1)+1} \dots S]}{k_{3}[CH_{2} \dots S] + k_{4} \cdot [H \dots S] + k_{5}}, n \ge 2$$
(8)

Введем некоторую степень а, которая является экспериментальной величиной и равна при
 $n \geq 2 \ (10):$

Вестник Тверского государственного университета. Серия «Химия». 2022. № 3 (49)

$$\alpha_{n} = \frac{\left[C_{n}H_{2n+1}\dots S\right]}{\left[C_{n-1}H_{2(n-1)+1}\dots S\right]}$$
(10)

Тогда концентрация алкила с учетом уравнения 10 будет равна (11):

$$\begin{bmatrix} C_n H_{2n+1} \dots S \end{bmatrix} = \begin{bmatrix} CH_3 \dots S \end{bmatrix} \cdot \prod_{n=2}^n \alpha_n$$

$$\begin{bmatrix} C_n H_{2n+1} \dots S \end{bmatrix} = \frac{k_1 \cdot K_2^{0.5} \cdot K_{H_2}^{0.5} \cdot [H_2]_0^{0.5} \cdot [S]}{1 + \frac{k_2 \cdot P_{H_2O}}{k_3 \cdot K_1 \cdot K_2^{0.5} \cdot K_3 \cdot K_4 \cdot K_{CO} \cdot K_{H_2}^{1.5} \cdot [CO]_0 \cdot [H_2]_0^{1.5}}} \cdot \prod_{n=2}^n \alpha_n$$
(11)

Скорость образования алкоксила будет подчиняться уравнению 12:

$$\frac{d[H_{2n+1}C_nO...S]}{dt} = k'[H_{2n-1}C_nO_2...S] \cdot [H...S]^4 - k_1'[H_{2n+1}C_nO...S] \cdot [CO'] - k_2'[H_{2n+1}C_nO...S] \cdot [H...S] = 0$$
(12)

Скорость роста цепи на железосодержащих центрах будет описываться уравнением 12. Тогда с учетом уравнения 1, концентрация кислородсодержащих интермедиатов будет равна (13):

$$\frac{d[H_{2n-1}C_nO_2...S]}{dt} = k_1 \cdot [H_{2(n-1)+1}C_{n-1}O...S] \cdot [CO'] - k'[H_{2n-1}C_nO_2...S] \cdot [H...S]^4 - (13)$$

$$-k_3 \cdot [H_{2n-1}C_nO_2...S] \cdot [H...S] = 0$$

$$[H_{2n-1}C_nO_2...S] = \frac{k_1 \cdot [H_{2(n-1)+1}C_{n-1}O...S] \cdot [CO']}{k' \cdot [H...S]^4 + k_3' \cdot [H...S]} = \frac{k_1 \cdot [H_{2(n-1)+1}C_{n-1}O...S] \cdot [CO']}{k' \cdot [H_{2n-1}C_nO_{2n-1}C_{n-1}O...S] \cdot K_{CO} \cdot [CO]_0} = \frac{k_1 \cdot [H_{2(n-1)+1}C_{n-1}O...S] \cdot K_{CO} \cdot [CO]_0}{k' \cdot K_2^2 \cdot K_{H_2}^2 \cdot [H_2]_0^2 \cdot [S]^4 + k_3' \cdot K_2^{0.5} \cdot K_{H_2}^{0.5} \cdot [H_2]_0^{0.5} \cdot [S]}$$
(14)

Учитывая уравнение 14, получим, что концентрация алкоксила будет равна (15):

$$\begin{bmatrix} H_{2n+1}C_nO\dots S \end{bmatrix} = \frac{k' [H_{2n-1}C_nO_2\dots S] \cdot [H\dots S]^4}{k_1 \cdot [CO'] + k_2 \cdot [H\dots S]} = \\ = \frac{[H_{2(n-1)+1}C_{n-1}O\dots Fe^{2^+}]}{\left(1 + \frac{k_3'}{k'K_2^{1.5} \cdot K_{H_2}^{1.5} \cdot [H_2]_0^{1.5} \cdot [S]^3}\right) \cdot \left(1 + \frac{k_2' \cdot K_2^{0.5} \cdot K_{H_2}^{0.5} \cdot [H_2]_0^{0.5} \cdot [S]}{k_1' K_{CO} \cdot [CO]_0}\right)$$
(15)

Вводя экспериментальное значение α', как соотношение концентраций гомологов оксигенатов (16):

Вестник Тверского государственного университета. Серия «Химия». 2022. № 3 (49)

$$\alpha_{n}' = \frac{\left[H_{2n+1}C_{n}O...S\right]}{\left[H_{2(n-1)+1}C_{n-1}O...S\right]}$$
(16)

Получим, что концентрация алкоксила будет равна (17):

$$[H_{2n+1}C_nO...S] = [H_3CO...S] \cdot \prod_{n=2}^n \alpha_n' =$$

$$= K' \cdot K_1 \cdot K_2^{1,5} \cdot K_3 \cdot K_{CO} \cdot K^{1,5}_{H_2} \cdot [CO]_0 \cdot [H_2]_0^{1,5} \cdot [S]^2 \cdot \prod_{n=2}^n \alpha_n'$$
(17)

Скорости образования продуктов синтеза Фишера-Тропша в присутствии Ru-Fe-СПС катализатора будут определяться уравнениями 18-21.

$$\frac{d[CH_4]}{dt} = k_2[CH_3\dots S][H\dots S]$$
(18)

$$\frac{d[C_n H_{2n+2}]}{dt} = k_4 [C_n H_{2n+1} \dots S] [H \dots S]$$

$$(19)$$

$$\frac{d[C_n H_{2n}]}{dt} = k_5 [C_n H_{2n+1} \dots S]$$
(19)

$$\frac{d[C_n H_{2n+2}O]}{dt} = k_2 ' [H_{2n+1}C_n O \dots S] [H \dots S]$$
(20)

$$\frac{d[C_n H_{2n} O_2]}{dt} = k_3' [H_{2n-1} C_n O_2 \dots S] [H \dots S]$$
(21)

Учитывая модель Ленгмюра-Хиншельвуда, введем некоторую величину Θ , отражающую количество свободных адсорбционных центров (22):

$$[S] = 1 - \Theta \tag{22}$$

Решением системы дифференциальных уравнений были рассчитаны константы скоростей реакций и константы равновесия элементарных стадий, представленные в таблицах 2 и 3.

Таблица 2

Константы равновесия элементарных стадий процесса синтеза Фишера-Тропша в присутствии Ru-Fe-СПС катализатора

Стадия	Обозначение	Значение				
	константы равновесия					
1. Абсорбция (растворение)	K _{co}	0,999384				
компонентов синтез-газа в додекане	K_{H_2}	0,998396				
2. Адсорбция растворенных молекул	K_1	0,9999				
на активных центрах	<i>K</i> ₂	0,978				
3. Взаимодействие адсорбированных	K_{2}	0,9992				
на активных центрах молекул с	5					
образованием гидроксикарбена						
4. Гидрирование гидроксикарбена с	K_{A}	0,99998				
образованием карбеновой единицы	+					
10. Образование оксигенатной	<i>K</i> '	0,792				
единицы на железосодержащих						
активных центрах						

Таблица 3

Константы роста цепи и реакций образования продуктов синтеза Фишера-Тропша в присутствии Ru-Fe-СПС катализатора

n	k ₃ , ч ⁻¹	k ₄ , ч ⁻¹	k₅, ч ⁻¹	k ₂ , ч ⁻¹	k ₃ ', ч ⁻¹
1	1762,754*	0,001125**			
2	612,25	0,001084		0,00131	0,006974
3	352,8	0,000621		0,00155	
4	69,58	0,000117			0,0003697
5	13,18		0,0000126		
6	2018,64	0,00363	0,00000424		
7	73,47	0,000136			
8	2002,78	0,00371			
9	143,41	0,000258			
10	105,64	0,000189			
11	131,58	0,000224			

* Значение k₁

** Значение k₂

Полученные значения констант скоростей и констант равновесий удовлетворяют сформулированным допущениям и гипотезам, обозначенным выше. Проверка применимости модели проводилась при сравнении экспериментальных данных на начальном этапе процесса (от 0 до 3 часов) с зависимостями, полученными расчетным путем (Рисунок).

Рисунок. Кинетические зависимости образования метана и этана (а), гексана и октана (б), пропана, гептана, ундекана (в), бутана, нонана, декана (г), циклопентана, циклогексана, изомеров пропанола (д) и кислородсодержащих продуктов синтеза Фишера-Тропша (е) (точки – экспериментальные данные, линии – расчетные данные)

Полученные с помощью моделирования кривые образования основных продуктов синтеза Фишера-Тропша в присутствии Ru-Fe-СПС катализатора показывают хорошую сходимость с экспериментальными данными на начальном этапе. Это подтверждает применимость предложенной кинетической модели и правильность рассчитанных констант скоростей элементарных стадий реакции. При сравнении экспериментальных и расчетных кинетических кривых образования алканов (Рисунок 1в) можно отметить, что, как и в случаях, представленных на рисунках 1а и 1б, расчетные кривые адекватно описывают начальные стадии процесса с хорошей сходимостью. Для циклических и кислородсодержащих продуктов процесса синтеза Фишера-Тропша наблюдается меньшая сходимость расчетных и экспериментальных данных. Однако, учитывая, что эти продукты вступают в дальнейшие превращения, а также допуская, что их содержание в реакционной смеси минимально, найденные константы (Таблица 3) можно считать применимыми в данном случае. Стоит отметить, что для кислородсодержащих продуктов сходимость расчетных и экспериментальных данных более высокая, чем для циклических углеводородов.

Расхождение экспериментальных И расчетных данных наблюдается после 3 часов протекания синтеза Фишера-Тропша, что, вероятно, связано с установлением термодинамического и химического равновесий реакции конверсии синтез-газа. Кроме того, при составлении кинетической модели, как и во многих работах по кинетическому моделированию процесса, не учитывались вторичные процессы гидрирования, гидрогенолиза, циклизации и изомеризации продуктов, процессы десорбции продуктов с активных центров катализатора, процессы дезактивации катализатора, а также разница между природой активных центров. Однако, в отличие от указанных работ, при моделировании процесса в настоящей работе была учтена зависимость констант скоростей процесса от числа атомов углерода в продуктах.

Работа выполнена при финансовой поддержке Стипендии Президента РФ (грант СП-4822.2022.1)

Список литературы

- Qi Y., Yang J., Chen D., Holmen A. // Catalysis Letters. 2014. V. 145. Is. 1. P. 145-161.
- 2. Dry M.E. // Applied Catalysis A: General. 1996. V. 138. Is. 2. P. 319-344.
- Hall C., Gall D., Smith S. // Journal of Institute of Petoleum. 1952. V. 38. Is. 76. P. 845-846.
- 4. Brötz W. // Journal of Electrochemistry and Applied Physical Chemistry. 1949. V. 5. P. 301-306.
- 5. Anderson R.B., Karn F.S. // Journal of Physical Chemistry. 1960. V. 64. P. 805-808.
- 6. Dry M. // Journal of Catalysis. 1972. V. 25. P. 99-104.
- 7. Dry M.E. // Industrial and Engineering Chemistry. 1976. V. 15. P. 282-286.

- Markova M.E., Gavrilenko A.V., Stepacheva A.A., Matveeva V.G., Sulman M.G., Sulman E.M., Panfilov V.I. // Reaction Kinetics, Mechanisms and Catalysis. 2020. V. 130. Is 2. P. 813-823.
- 9. Маркова М.Е., Степачёва А.А., Сульман М.Г., Матвеева В.Г. // Вестник Тверского государственного университета. Серия: Химия. 2021. № 3 (45). С. 33-40.

Об авторах:

МАРКОВА Мария Евгеньевна – преподаватель кафедры биотехнологии, химии и стандартизации, ФГБОУ ВО «Тверской государственный технический университет» (170026, Тверь, наб. А. Никитина, 22); e-mail: mashulikmarkova@gmail.com

СТЕПАЧЁВА Антонина Анатольевна – кандидат химических наук, доцент, доцент кафедры биотехнологии, химии и стандартизации, ФГБОУ ВО «Тверской государственный технический университет» (170026, Тверь, наб. А. Никитина, 22); e-mail: <u>a.a.stepacheva@mail.ru</u>

СУЛЬМАН Михаил Геннадьевич – доктор химических наук, профессор, заведующий кафедрой биотехнологии, химии и стандартизации, ФГБОУ ВО «Тверской государственный технический университет» (170026, Тверь, наб. А. Никитина, 22); e-mail: sulman@online.tver.ru

MATHEMATICAL MODELLING OF LIQUID-PHASE FISCHER-TROPSCH KINETICS

M.E. Markova, A.A. Stepacheva, M.G. Sulman

Tver State Technical University, Tver

Modeling the Fischer-Tropsch synthesis process is quite complex. There is a wide variety of kinetic models that have been developed to describe the Fischer-Tropsch synthesis reaction. This paper presents a mathematical model of the process describing the initial period of CO consumption and the formation of basic products in the presence of an iron-ruthenium containing catalyst based on hypercrosslinked polystyrene.

Keywords: synthesis gas, Fischer-Tropsch synthesis, mathematical model, kinetics.