УДК 547.721, 544.47 DOI 10.26456/vtchem2022.4.3

АНАЛИЗ МЕТОДОМ РФЭС КАТАЛИТИЧЕСКИХ СИСТЕМ НА ОСНОВЕ РУТЕНИЯ

П.А. Цветкова, К.Е. Сальникова, А.В. Быков, В.Г. Матвеева, М.Г. Сульман

Тверской государственный технический университет, г. Тверь

На основе анализа обзорных РФЭ спектров образцов катализаторов 3%Ru/Al₂O₃ и 3%Ru/CПС, до и после каталитического теста был установлен качественный и количественный элементный состав поверхности этих образцов. Состояния для катализатора 3%Ru/Al₂O₃ до каталитического теста гидратированного рутения (IV) составил 23% и оксида рутения (IV) – 45%, соответственно, и после – гидратированного рутения (IV) составил 21% и оксида рутения (IV) – 37%, соответственно. Состояния для катализатора 3%Ru/CПС до каталитического теста гидратированного рутения (IV) – 37%, соответственно. Состояния для катализатора 3%Ru/CПС до каталитического теста гидратированного рутения (IV) – 3%, соответственно, и после – гидратированного рутения (IV) – 3%, соответственно, и после – гидратированного рутения (IV) – 2%, соответственно.

Ключевые слова: рутений, оксид алюминия, сверхсшитый полистирол, рентгеновская фотоэлектронная спектроскопия

В последнее время стал широко использоваться метод рентгеновской фотоэлектронной спектроскопии для применения широкого спектра задач, начиная от идентификации загрязнения на поверхности и заканчивая характеристикой материалов в качестве контроля процесса или в качестве метода определения характеристик новых материалов в исследовательской среде. Многие технологии в различных отраслях промышленности, от медицинских приборов до микроэлектроники, зависят от знания состава, чистоты поверхности, или информации о химических характеристиках [1].

РФЭС основан на измерении энергии фотоэлектронов, выбитых с различных энергетических уровней атомов при облучении вещества рентгеновским излучением. Под действием кванта света из вещества выбиваются электроны, энергия кванта hv в соответствии с законом сохранения энергии тратится на энергию ионизации $E_{cB.}$ и передачу этому электрону кинетической энергии $E_{кин.}$. Поскольку величины hv и ϕ известны, а $E_{кин.}$ определяется экспериментально, уравнение (1) позволяет легко рассчитать $E_{cB.}$

$$h\nu = E_{cB} + E_{KHH} + \phi \tag{1}$$

где hv – энергия возбуждающего фотона; $E_{cB.}$ – энергия связи электрона; $E_{KUH.}$ – фиксируемая в эксперименте кинетическая энергия вылетевшего электрона; ϕ – работа выхода спектрометра [2].

© Цветкова П.А., Сальникова К.Е., 21 Быков А.В., Матвеева В.Г., Сульман М.Г., 2022 РФЭС — это метод, который дает количественную информацию о химическом состоянии поверхности. Применение дополнительных методов химического анализа поверхности может обеспечить ясность для присвоения химического состояния или для состава сложной смеси материалов, которая может выходить за пределы пространственного разрешения РФЭС.

Экспериментальная часть

В данной работе проводился анализ РФЭС Ru-содержащих катализаторов до и после селективного гидрирования фурфурола до фурфурилового спирта. Исследовались катализаторы: 3%Ru/Al₂O₃ и 3%Ru/CПС, восстановленные в токе водорода при 300°C в течении 2-х часов. (СПС – сверхсшитый полистирол).

Процесс гидрирования проводили при непрерывном перемешивании (скорость перемешивания 1000 об./мин.). Время одного каталитического теста составляло 90 мин. В реактор загружали Ruсодержащий катализатор в количестве 0.1 г., 2 мл фурфурола и 48 мл изопропилового спирта в качестве растворителя. Температура в реакторе – 120°С, давление водорода – 6МПа.

РФЭ спектры были получены с предварительно дегазированных в вакууме образцов с помощью модернизированного электронного спектрометра ЭС – 2403 СКБ АП РАН, оснащенным анализатором энергии PHOIBOS 100-5MCD (производство SpecsGmbH, Германия) и рентгеновским источником $MgK_{\alpha}/AlK_{\alpha}$ XR-50 (производство SpecsGmbH, Германия). Для фотоэлектронного возбуждения использовалось характеристическое излучение МgKα мощностью 250 Вт. Спектры записаны при давлении не выше 3*10⁻⁶ Па Обзорные спектры были получены в диапазоне 1100-0 эВ с шагом по энергии 0.5 эВ и выдержкой в точке 0.4 с; энергия пропускания анализатора составляла 40 эВ, что соответствует 1.4 эВ ПШПВ фотоэлектронной полосы стандарта Ag 3d_{5/2}. Спектры высокого разрешения получены с шагом по энергии 0.05 эВ; энергия пропускания анализатора составляла 7 эВ, что соответствует 0.85 эВ ПШПВ фотоэлектронной полосы стандарта Ад 3d5/2. Спектры получены с использованием стандартного программного обеспечения SpecsLab2. Для анализа спектров был применен программный пакет CasaXPS [3].

Обсуждение результатов

Для анализа элементного состава поверхности и химического состояния 3%Ru/Al₂O₃ был проведён анализ методом рентгеновской фотоэлектронной спектроскопии. Полученные спектры представлены на рисунках 1 и 2.

Рис. 1. Обзорный фотоэлектронный спектр образца 3%Ru/Al₂O₃ до (а) и после (б) каталитического теста

На основе анализа обзорных фотоэлектронных спектров образцов катализатора 3%Ru/Al₂O₃, до и после каталитического теста был установлен качественный и количественный элементный состав поверхности этих образцов. Поверхность обоих катализаторов содержит элементы: Al, O, C, Cl, Ru, катализатор после каталитического цикла на своей поверхности также содержит азот в следовых количествах (табл. 1).

Вестник Тверского государственного университета. Серия «Химия». 2022. № 4 (50)

	1		
3% Ru/Al ₂ O ₃ -(до каталитического		3% Ru/Al ₂ O ₃ (после каталитического	
текста)		теста)	
Элемент и	Атомные	Элемент и линия	Атомные
линия	проценты, %		проценты, %
Al 2p	24.63	Al 2p	19.61
O 1s	24.98	O 1s	22.66
C 1s	46.10	C 1s	52.59
F 1s	0.66	F 1s	0.28
Cl 2p	0.66	Cl 2p	1.87
Ru 3p _{3/2}	2.97	Ru 3p _{3/2}	2.32
N 1s	0.00	N 1s	0.68

Элементный состав поверхности рутения для образца 3% Ru/Al₂O₃

Как следует из полученных данных в ходе реакции гидрирования фурфурола до фурфурилового спирта, на поверхности катализатора адсорбируются органические соединения, что приводит к увеличению содержания углерода на поверхности катализатора. Можно отметить, что для отработанного образца, количество рутения на поверхности уменьшается, что вероятно связано с его перераспределением в объемную фазу.

Для индентификации химических состояний рутения были зарегестрированы фотоэлектронные спектры высокого разрешения аналитических подуровней Ru 3d и C 1s для образцов катализатора до и после каталитического теста (Рисунок 2) и проведено моделирование спектров этих подуровней.

На основе представленных моделей установлено, что на поверхности каталитической системы 3%Ru/Al₂O₃ до и после каталитического теста, рутений находится в виде оксида рутения (IV) (Е_{св} Ru 3d_{5/2} 280.6 эВ) и гидратированного оксида рутения (IV) (Е_{св} Ru 3d_{5/2} 282.5 эВ), образовавшихся в ходе превращения Ru(OH)Cl₃ во время синтеза катализатора. При этом соотношение состояний RuO₂:RuO₂*nH₂O до и после каталитического теста составляет 1:2. Состояния для катализатора 3% Ru/Al₂O₃ до каталитического теста гидратированного рутения (IV) составил 23% и оксида рутения (IV) -45%, соответственно, и после – гидратированного рутения (IV) составил 21% и оксида рутения (IV) – 37%, соответственно.

Рис. 2. Спектр высокого разрешения подуровней Ru 3d и C 1su их модели до (а) после (б) каталитического эксперимента для катализатора 3%Ru/Al₂O₃

Для анализа элементного состава поверхности и химического состояния 3%Ru/СПС был проведён анализ методом рентгеновской фотоэлектронной спектроскопии. Полученные спектры представлены на рис. 3 и 4.

Рис. 3. Обзорный фотоэлектронный спектр образца 3%Ru/СПС до (а) и после (б) каталитического теста

На основе обзорных фотоэлектронных спектров образцов катализатора 3%Ru/СПС до и после каталитического теста был установлен качественный и количественный элементный состав поверхности этих образцов. Поверхность обоих катализаторов содержит элементы: О, Ru, N, C, CI, в соответствии с исходным прекурсором рутения и условиями синтеза каталитической системы (табл. 2).

Вестник Тверского государственного университета. Серия «Химия». 2022. № 4 (50)

Элементный состав поверхности рутения для образца 576 Ка/стте				
3% Ru/СПС (до каталитического		3% Ru/СПС (после каталитического		
текста)		текста)		
Элемент	Атомные проценты, %	Элемент	Атомные проценты, %	
C 1s	88.42	C 1s	87.89	
O 1s	8.21	O 1s	9.86	
CI 2p	0.93	CI 2p	0.35	
Ru 3p _{3/2}	2.08	Ru 3p _{3/2}	1.20	
N 1s	0.35	N 1s	0.47	

Элементный состав поверхности рутения для образца 3% Ru/СПС

Таблица 2

Для индентификации химических состояний рутения были зарегестрированы фотоэлектронные спектры высокого разрешения аналитических подуровней Ru 3d и C 1s для образцов катализатора 3%Ru/CПC до и после каталитического цикла (Рисунок 4) и проведено моделирование спектров этих подуровней.

Рис. 4. Фотоэлектронный спектр высокого разрешения подуровней Ru 3d и C 1s до (а) и после (б) каталитического теста для образцов катализатора 3%Ru/СПС

Сравнивая графики (рис. 3), наблюдаем небольшое увеличение содержания кислорода, что вероятно связано с окислением поверхности атмосферным кислородом.

Исходя из данных элементного состава поверхности катализаторов 3%Ru/CПС до и после гидрирования, можно сделать вывод о том, что рутения после реакции становится меньше на поверхности, по сравнению с исходным образцом (табл. 2). Вероятно, это связано с перераспределением рутения между поверхностью и объемом в ходе каталитической реакции.

Спектры высокого разрешения (рис. 4) показывают, что рутений в металлической фазе не содержится в катализаторе. По анализу литературных источников [4, 5] металлический рутений имеет энергию связи 280 эВ. Таким образом, рутений как в катализаторе 3%Ru/Al₂O₃ так и в катализаторе 3%Ru/CПС содержится в оксидной форме со степенью окисления 4+. Анализируя рисунок 4 видно, что рутений до каталитического теста содержится в виде $3d_{5/2}$ RuO₂*nH₂O и Ru $3d_{5/2}$ RuO₂ , которые соотносятся, как 1:11 соответственно. После каталитического гидрирования это соотношение становится равным 1:10, вероятно, незначительно увеличивается количество Ru $3d_{5/2}$ RuO₂*nH₂O. Состояния для катализатора 3%Ru/CПС до каталитического теста гидратированного рутения (IV) составил 29% и оксида рутения (IV) – 3%, соответственно, и после – гидратированного рутения (IV) составил 22% и оксида рутения (IV) – 2%, соответственно.

В результате проведенного исследования катализаторов 3%Ru/Al₂O₃ и 3%Ru/СПС методом РФЭС, установлено, что для обоих образцов, несмотря на разные носители, рутений содержится в оксидной форме в виде RuO₂ и RuO₂*nH₂O. Для катализатора 3%Ru/Al₂O₃ характерно большое содержание оксида рутения именно в гидратированной форме, что вероятно связано с более полярной природой носителя (Al₂O₃) по сравнению с неполярным СПС. При отработанных катализаторов (после гидрирования исследовании фурфурола до фурфурилового спирта) для каждого образца наблюдалось уменьшение содержания рутения на поверхности, что вероятно связано с его перераспределением между поверхностью и объемной фазой.

Список литературы

- Devereaux T.P., Moritz B., Jia C., Kas J.J., Rehr J.J. Web-based methods for X-ray and photoelectron spectroscopies // Computational Materials Science. 2021. V. 200 p. 110814.
- 2. SERNIA ИНЖИНИРИНГ, Рентгеновская фотоэлектронная спектроскопия (РФЭС) [Электронный ресурс] / ООО «СЕРНИЯ ИНЖИНИРИНГ». Электрон. дан. [Б. м.], 2020. Режим доступа: https://sernia.ru/training/rentgenovskaya_fotoelektronnaya_spektroskopiya_ /. Загл. с экрана.

Вестник Тверского государственного университета. Серия «Химия». 2022. № 4 (50)

- Grigorev M.E., Mikhailov S.P., Bykov A.V. Sidorov A.I., Tiamina I.Y., Vasiliev A.L., Nikoshvili L.Zh., Matveeva V.G., Plentz Meneghetti S.M., Sulman M.G., Sulman E.M. Mono- and bimetallic (Ru-Co) polymeric catalysts for levulinic acid hydrogenation // Catalysis Today. 2021. V. 378. p. 167–175.
- 4. Morgan D.J. Resolving ruthenium: XPS studies of common ruthenium materials // Surface and Interface Analysis. 2015. V. 47(11). p. 1072–1079.
- Omajali J.B., Gomez-Bolivar J., Mikheenko I.P., Sharma S., Kayode B., Al-Duri B., Banerjee D., Walker M., Merroun M.L., Macaskie L.E. Novel catalytically active Pd/Ru bimetallic nanoparticles synthesized by Bacillus benzeovorans // Scientific Reports. 2019. V. 9(1). p. 1-12.

Об авторах:

ЦВЕТКОВА Полина Андреевна – студент 4 года обучения, кафедра Биотехнологии, химии и стандартизации, ФГБОУ ВО Тверской государственный технический университет (170026, г. Тверь, наб. А. Никитина, 22); e-mail: polina.tsvetkova.777@gmail.com.

САЛЬНИКОВА Ксения Евгеньевна – специалист по УМР кафедры Биотехнологии, химии и стандартизации, ФГБОУ ВО Тверской государственный технический университет (170026, г. Тверь, наб. А. Никитина, 22); e-mail: salnikova.k.e@yandex.ru.

БЫКОВ Алексей Владимирович –кандидат химических наук, доцент кафедры Биотехнологии, химии и стандартизации, ФГБОУ ВО Тверской государственный технический университет (170026, г. Тверь, наб. А. Никитина, 22); e-mail: <u>BykovAV@yandex.ru</u>.

МАТВЕЕВА Валентина Геннадьевна – доктор химических наук, профессор, профессор кафедры Биотехнологии, химии и стандартизации, ФГБОУ ВО Тверской государственный технический университет (170026, г. Тверь, наб. А. Никитина, 22), e-mail: matveeva@science.tver.ru

СУЛЬМАН Михаил Геннадьевич – доктор химических наук, профессор, заведующий кафедрой Биотехнологии, химии и стандартизации, ФГБОУ ВО Тверской государственный технический университет,(170026, г. Тверь, наб. А. Никитина, 22); e-mail: sulmanmikhail@yandex.ru.

ANALYSIS BY THE RFES METHOD OF CATALYTIC SYSTEMS BASED ON RUTHENIUM

P.A. Tsvetkova, K.E. Salnikova, A.V.Bykov, V.G. Matveeva, M.G. Sulman

Tver State Technical University, Tver

Based on the analysis of survey XPS spectra of 3%Ru/Al₂O₃ and 3%Ru/HPS catalyst samples before and after the catalytic test, the qualitative and quantitative elemental composition of the surface of these samples was established. Conditions for the 3% Ru/Al₂O₃ catalyst before the catalytic test of hydrated ruthenium (IV) was 23% and ruthenium (IV) oxide – 45%, respectively, and after – hydrated ruthenium (IV) was 21% and ruthenium (IV) oxide – 37%, respectively. Conditions for the catalyst 3% Ru/HPS before the catalytic test hydrated ruthenium (IV) was 29% and ruthenium (IV) oxide – 3%, respectively, and after – hydrated ruthenium (IV) was 22% and ruthenium (IV) oxide – 3%, respectively, and after – hydrated ruthenium (IV) was 22% and ruthenium (IV) oxide – 3%, respectively, and after – hydrated ruthenium (IV) was 22% and ruthenium (IV) oxide – 3%, respectively.

Keywords: ruthenium, aluminum oxide, hypercrosslinked polystyrene, X-ray photoelectron spectroscopy.