УДК 612.13

АДРЕНОРЕАКТИВНОСТЬ ПРИ ОСТРОМ ХОЛОДОВОМ СТРЕССЕ

М.Н. Мирюк, В.Н. Ананьев

Институт медико-биологических проблем

Проведен анализ реактивности артерий кроликов на миметики после однократного охлаждения (острый холодовый стресс). Отмечено снижение на 67% чувствительности альфа-1-адренорецепторов артерий кожномышечной области при одновременном повышении количества активных альфа-1-адренорецепторов на 115%. Выявлено, что в артериях кожнооднократного мышечной области после охлаждения снижается чувствительность альфа-2-адренорецепторов на 66,5% при повышении количества активных альфа-2-адренорецепторов на 150%. При адаптации к холоду увеличивается реактивность артерий исключительно благодаря альфа-1повышению в них количества активных и альфа-2адренорецепторов при снижении чувствительности обоих типов рецепторов.

Ключевые слова: острый холодовой стресс (OXC), холод, сердечнососудистая система, кровообращение, кролик.

Введение. Острый холодовой стресс — один из сильнейших факторов воздействия на организм. Он является первичным при холодовой адаптации [1; 2; 3; 4; 10]. Известно, что при миграции человека на Крайний Север система кровообращения одной из первых включается в реакцию адаптации и играет важную роль в поддержании гомеостаза организма в новых экологических условиях. Являясь важным лимитирующим звеном, от которого во многом зависит конечный адаптивный результат, система кровообращения может служить и маркером общего адаптационного процесса. Изучение проблемы физиологии и патологии механизмов адаптации сердечнососудистой системы в условиях Крайнего Севера приобретает первостепенное значение [5; 6; 7; 8; 9; 11; 13; 15]. При ОХС особую роль играет симпатическая нервная система и реактивность различных органов и систем к нейромедиаторам. В тоже время ОХС сопровождается сенсибилизацией ряда адренергических реакций [13; 17].

Требует изучения вопрос, как количественно изменяется чувствительность количество И активных альфа адренорецепторов артериальных сосудов при ОХС, что чрезвычайно важно при применении в лечебных целях препаратов, действующих как на альфа-1- так и на альфа-2-адренорецепторы артериальных сосудов. Изучение реактивности адренорецепторов при ОХС теоретически подводит базу для создания новых препаратов или подбора уже известных для коррекции дизадаптации к холоду. Количественная оценка функциональной активности альфа адренорецепторов сосудов при ОХС должна внести существенный вклад в расшифровку функциональной организации нейрогуморальных и местных механизмов регуляции кровообращения при экстремальных воздействиях на организм.

Задачей настоящей работы — изучение функциональной активности постсинаптических адренорецепторов артериальных сосудов кожномышечной области на действие вазоактивных веществ в возрастающих дозах.

Материал и методика. Для решения поставленных задач проведены исследования на кроликах самцах (массой 2,5-3,5 кг) под золетиловым наркозом (внутривенно 30 мг/кг) с применением гепарина (1000 ед/кг). Контрольную группу составили кролики, содержавшиеся при температуре окружающей среды $+18-22^{\circ}$ С. Опытная группа - кролики после однократного охлаждения. Холодовое воздействие проводилось 6 часов в охлаждающей камере при температуре -10° С. В остальное время кролики находились при температуре $+18-22^{\circ}$ С. Исследовали сосудистую ответную реакцию препарата кожно-мышечной области задней конечности при перфузии кровью этого же животного с помощью насоса постоянной производительности [12; 14; 16].

Исследуемые препараты вводили перед входом насоса, изменения перфузионного давления регистрировали электроманометром и записывали на ленте самописца Н-338-4П. Вазоактивные вещества вводили одновременно в приводящую магистраль перфузионного насоса в объеме 0,125 мл в восьми возрастающих дозах, это: селективный альфа-1-адреномиметик мезатон (фенилэфрин), селективный альфа-2-адреномиметик клофелин (клонидин). Таким образом, мезатон отражали альфа-1-адренорецепторы, клофелин отражал альфа-2-адренорецепторы артериальных сосудов.

Изменения перфузионного давления от исходного уровня после введения биологически активных веществ оценивались как реакции, характеризующие состояние гладкой мускулатуры артериальных сосудов. Это позволило по кривым «доза — эффект» оценить в динамике влияние холодовой адаптации животного на реактивность артериальных сосудов. Для описания взаимодействия медиатора со специфическим рецептором использовалась теория Кларка и Ариенса, которая основывается на том, что величина эффекта пропорциональна количеству комплексов рецептор-медиатор. Величина фармакологического эффекта (Е) прямо пропорциональна концентрации комплексов лекарственное вещество - рецептор. Максимальный эффект имеет место при оккупации всех рецепторов. Для анализа ответной реакции сосудистых регионов нами использован графический способ определения параметров взаимодействия, впервые предложенный Лайниувером и Берком.

взаимодействия Для оценки параметров адренорецепторов медиаторами были применены методы количественной взаимодействия «медиатор-рецептор», разработанные [12; 16]. Для построения графика «доза эффект» В двойных обратных координатах, экспериментальные точки соединены прямой, с использованием метода наименьших квадратов и экстраполировали до пересечения с осями ординат и абсцисс. Пересечение с осью ординат давало отрезок, который соответствовал 1/Рм, обратная величина которого отражала максимально возможную реакцию перфузионного давления (Рм - мм рт. ст.) и соответствовала количеству активных адренорецепторов; пересечение с осью абсцисс отсекало отрезок, который был равен величине 1/K и отражал чувствительность адренорецепторов к агонисту, а обратная величина (K - мкг/кг) была равна дозе, вызывающей 50% от максимально возможной реакции перфузионного давления. Определялась и эффективность взаимодействия медиатора с рецептором E (мм рт. ст./мкг), которая находилась по формуле $E=(P\text{м})/(2\times K)$.

Результаты и обсуждение. Установлено, что после однократного охлаждения чувствительность альфа-1- адренорецепторов артерий кожномышечной области снижается на 67 - 68%. Одновременно повышается количество активных альфа-1-адренорецепторов в артериях кожно-мышечной области на 115%. В артериях кожно-мышечной области после однократного охлаждения снижается чувствительность альфа-2-адренорецепторов на 66,5% при повышении количества активных альфа-2-адренорецепторов на 150%. При адаптации к холоду происходит увеличение реактивности артериальных сосудов кожно-мышечной области в большей степени за счет увеличения количества активных альфа-2-адренорецепторов, в менишей степени — альфа-1-адренорецепторов.

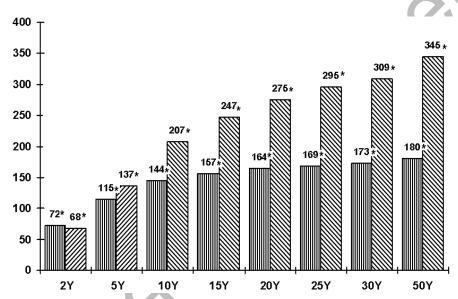


Рис. 1. Средние величины повышения перфузионного давления артериального русла задней конечности кролика на фенилэфрин в контрольной группе и после однократного охлаждения: по оси абсцисс: дозы препарата в мкг/кг; по оси ординат: изменение перфузионного давления в мм рт. ст.; столбики с вертикальными линиями - животные контрольной группы, столбики с косыми линиями – животные после воздействия холода; достоверные различия отмечены звездочкой (*)

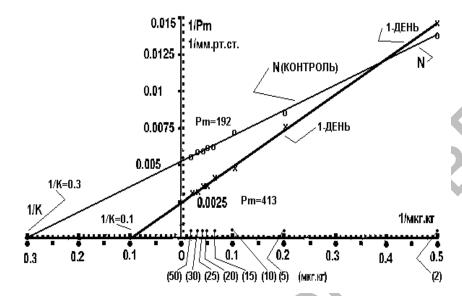


Рис. 2. Повышение перфузионного давления артериального русла задней конечности кролика на фенилэфрин в двойных обратных координатах в контрольной группе (N) и после однократного охлаждения (1-день): по оси абсцисс: от пересечения с осью ординат направо – доза препарата в обратной величине (1 мкг/кг); ниже в круглых скобках – доза в прямых величинах (мкг/кг); от пересечения с осью ординат налево – величина чувствительности взаимодействия (1/К) рецепторов с миметиком, а обратная ей величина отражает сродство (К мкг/кг) рецепторов к миметику,

по оси ординат: обратная величина перфузионного давления (1/Рм); прямая величина (Рм) мм рт. ст. — пропорциональна количеству активных рецепторов, + — достоверные различия к контролю (N) (P<005), * — недостоверные различия к контролю

Нами был проведен сравнительный статистический анализ реактивности восьми возрастающих доз фенилэфрина с такими же дозами клонидина при внутриартериальном введении перед перфузионным насосом после однократной холодовой экспозиции животных. При введении всех восьми доз фенилэфрина и клонидина отмечались только прессорные реакции, на все дозы был больше прессорный эффект на фенилэфрин, чем на клонидин (Р<0,05).

Сравнительный анализ реактивности артерий к фенилэфрину и клонидину после однократного охлаждения. При введении дозы 2 мкг/кг прессорная реакция перфузионного давления на фенилэфрин составила P=68 мм рт. ст. и была в 5 раз больше, чем на клонидин (P=13 мм рт. ст.). При дозе 5 мкг/кг прессорная реакция перфузионного давления на фенилэфрин составила P=137 мм рт. ст. и была в 4,25 раза больше чем на клонидин (P=32 мм рт. ст.). При введении дозы 10 мкг/кг прессорная реакция перфузионного давления на фенилэфрин составила P=206 мм рт. ст. и была в 3,38 раза больше чем на клонидин (P=61 мм рт. ст.).

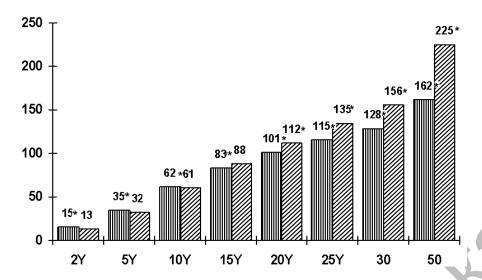


Рис. 3. Средние величины повышения перфузионного давления артериального русла задней конечности кролика на клонидин в контрольной группе и после однократного охлаждения: по оси абсцисс: дозы препарата в мкг/кг, по оси ординат: изменение перфузионного давления, мм рт. ст.; черные столбцы – контроль, светлые – животные после воздействия холода; * – недостоверные различия по сравнению с контрольной группой (*P>0,05), без * – различия достоверны (P<0,05)

При введении дозы 15 мкг/кг прессорная реакция перфузионного давления на фенилэфрин составила P=247 мм рт. ст. и была в 2,79 раза больше чем на клонидин (P=88 мм рт. ст.). При дозе 20 мкг/кг прессорная реакция перфузионного давления на фенилэфрин составила P=275 мм рт. ст. и была в 2,44 раза больше чем на клонидин (P=112 мм рт. ст.).

При введении дозы 25 мкг/кг прессорная реакция перфузионного давления на фенилэфрин составила P=294 мм рт. ст. и была в 2,18 раза больше чем на клонидин (P=134 мм рт. ст.).При дозе 30 мкг/кг прессорная реакция перфузионного давления на фенилэфрин составила P=309 мм рт. ст. и была в 1,98 раза больше чем на клонидин (P=156 мм рт. ст.). При введении дозы 50 мкг/кг прессорная реакция перфузионного давления на фенилэфрин составила P=345 мм рт. ст. и была в 1,53 раза больше чем на клонидин (P=225 мм рт. ст.).

С увеличением дозы фенилэфрина и клонидина разница в их прессорном действии значительно уменьшается. При дозе 2 мкг/кг фенилэфрин в 5 раз более сильно сужал артерии, чем клонидин (по сравнению с контрольной группой), а уже при дозе 50 мкг/кг прессорное преимущество фенилэфрина составило 1,53 раза.

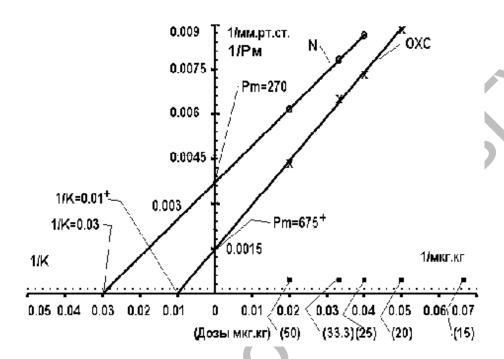


Рис. 4. Повышение перфузионного давления артериального русла задней конечности кролика на клонидин в двойных обратных координатах в контрольной группе (N) и после однократного охлаждения (ОХС): по оси абсцисс: от пересечения с осью ординат направо – доза препарата в обратной величине (1 мкг/кг); ниже в круглых скобках – доза препарата в прямых величинах (мкг/кг); от пересечения с осью ординат налево – величина чувствительности взаимодействия (1/К) рецепторов с миметиком, обратная ей величина отражает сродство (К мкг/кг) рецепторов к миметику,

по оси ординат: обратная величина перфузионного давления (1/Рм); прямая величина (Рм) мм рт. ст. – пропорциональна количеству активных рецепторов; + – достоверные различия к контролю (N) (P<005), * – недостоверные различия к контролю

Для выяснения механизмов данных различий проведен сравнительный анализ реактивности фенилэфрина и клонидина в двойных обратных координатах Лайниувера-Берка, что представлено на рис. 6. Как видно из рисунка 6 прямая, отражающая реактивность перфузионного давления на фенилэфрин при экстраполяции пересекает ось ординат в точке 1/P=0,002421 (обратные координаты), что соответствует P=413 мм рт. ст. Значит, при возбуждении 100% альфа-1-адренорецепторов максимально большая доза фенилэфрина (эта доза в этих координатах не может быть определена, так как стремится к пределу — бесконечности) теоретически вызовет прессорную реакцию перфузионного давления равную P=413 мм рт. ст. и эта величина, согласно публикации Б.Н. Манухина [12] соответствует пропорционально количеству активных альфа-1-адренорецепторов.

При дальнейшей экстраполяции прямой (прямая получена методом наименьших двойных квадратов), отражающей реактивность перфузионного давления на фенилэфрин на ось абсцисс при пере сечении получаем величину (1/K) чувствительности альфа-1-адренорецепторов к фенилэфрину, где 1/K=0,1 (1/K- это обратная величина дозы K=10 мкг/кг фенилэфрина, вызывающей 50% от максимально возможной прессорной реакции (P=413 мм рт. ст.)).

Сравнительный анализ фенилэфрина с клонидином показал, что чувствительность альфа-2-адренорецепторов к клонидину была всего 1/K=0,01, что в 10 раз меньше чувствительности альфа-1-адренорецепторов к фенилэфрину. Но зато количество активных альфа-2-адренорецепторов было в 1,63 раза больше к клонидину, чем количество альфа-1-адренорецепторов к фенилэфрину.

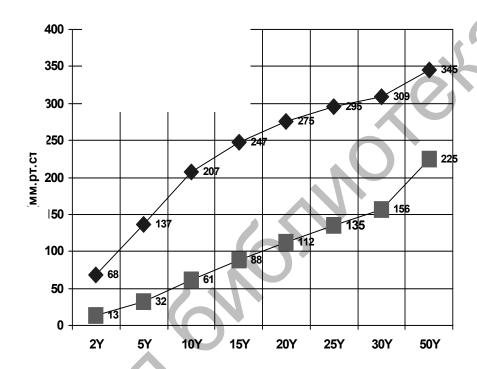


Рис. 5. Средние величины повышения перфузионного давления артериального русла задней конечности кролика на фенилэфрин (ромб) и клонидин (квадрат) после однократного охлаждения: по оси абсцисс: дозы препарата в мкг/кг; по оси ординат: изменение перфузионного давления в мм рт. ст.

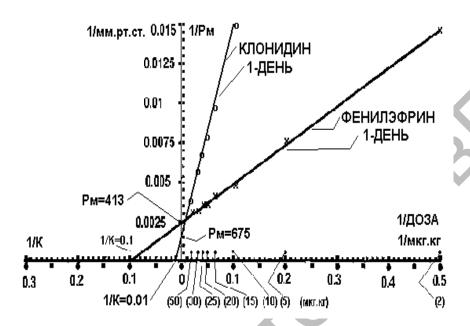


Рис. 6. Сравнительный анализ повышения перфузионного давления (мм рт. ст.) артериального русла задней конечности кролика на фенилэфрин с клонидином в двойных обратных координатах после однократного охлаждения (1 день): по оси абсцисс: от пересечения с осью ординат направо – доза препарата в обратной величине (1 мкг/кг); ниже в круглых скобках – доза препарата в прямых величинах (мкг/кг); от пересечения с осью ординат налево – величина чувствительности взаимодействия (1/К) рецепторов с миметиком, обратная ей величина отражает сродство (К мкг/кг) рецепторов к миметику и равна дозе, вызывающей 50% эффект от максимальой реакции артерий на данный миметик,

по оси ординат: отложены обратные величины реактивности перфузионного давления (1/Pм), что делает шкалу пропорциональной (прямая величина (Pм) мм рт. ст. пропорциональна количеству активных адренорецепторов)

В результате большей чувствительности (1/K)альфа-1адренорецепторов фенилэфрину, чем чувствительности альфа-2адренорецепторов к клонидину отмечается ярко выраженная прессорная реакция фенилэфрина на более низкие дозы. С увеличением дозы все большую роль играет количество активных адренорецепторов (Рм). Разница в прессорной реакции на фенилэфрин и клонидин с увеличением дозы начинает Благодаря чувствительность уменьшаться. TOMY, что адренорецепторов к фенилэфрину в 10 раз больше, а количество активных альфа-1-адренорецепторов к фенилэфрину только 1,63 раза меньше чем количество альфа-2-адренорецепторов к клонидину, преобладает прессорная реакция артерий на фенилэфрин.

Заключение. После однократного охлаждения чувствительность альфа-1- и альфа-2-адренорецепторов возрастает одинаково в 3 раза, а количество активных альфа-1- и альфа-2-адренорецепторов возрастает почти

одинаково, количество активных альфа-1-адренорецепторов к фенилэфрину увеличено в 2,15 раза, а количество активных альфа-2-адренорецепторов увеличено в 2,5 раза (P<0,05).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Авцын А.Л., Марачев А.Г.* Проявление адаптации и дизадаптации у жителей Крайнего Севера // Физиология человека. 1975. №4. С. 587 600.
- 2. Агаджанян Н.А., Жвавый Н.Ф., Ананьев В.Н. Адаптация человека к условиям Крайнего Севера. М., 1998.
- 3. *Агаджанян Н.А.*, *Торшин В.И*. Экология человека: Избранные лекции. М., 1994.
- 4. Агаджанян Н.А., Петрова П.Г. Человек в условиях Севера. М., 1996.
- 5. *Ананьев В.Н., Прокопъев Н.Я., Ананьева О.В.* Количественная оценка функциональной активности адрено- и холинорецепторов артерий при адаптации к холоду. Тюмень, 1997.
- 6. *Ананьев В.Н.*, *Сосин Д.Г.*, *Жвавый П.Н*. Адренорецепторы артерий различных сосудистых регионов при адаптации к холоду. Тюмень, 1997.
- 7. *Ананьев В.Н., Койносов П.Г., Сосин Д.Г.* Адаптация организма к воздействию низких температур. М., 1998.
- 8. *Деряпа Н.Р.*, *Рябинин И.Ф*. Адаптация человека в полярных районах земли. Л., 1977.
- 9. Казначеев В.П. Современные аспекты адаптации. Новосибирск, 1980.
- 10. *Колпаков В.В.* Хронофизиология меридиональных перемещений человека: Рук. деп. в ВИНИТИ, №7120-В 85 от 9.10.1985 г.
- 11. Колпаков В.В., Ананьев В.К. Реактивность сердечно-сосудистой системы к нейромедиаторам в условиях низких температур. Тюмень, 1996.
- 12. *Манухин Б.Н., Бердышева Л.В., Хакимова Д.Х*. Кинетический анализ αl-адренергической реакции гладких мышц семявыносящего протока крысы // Физиол. журн. СССР. 1990. Т. 76, №7. С. 863 868.
- 13. *Пастухов Ю.Ф., Хаскин В.В.* Адренергический контроль термогенеза при экспериментальной и природной адаптации животных к холоду // Успехи физиол. наук. 1979. Т. 10, №3. С. 121 142.
- 14. Сергеев П.В., Галенко-Ярошевский П.А., Шимановский Н.Л. Очерки биохимической фармакологии. М, 1996.
- 15. Судаков КВ. Системные механизмы мотиваций. М., 1979.
- 16. Ткаченко Б.И., Кульчицкий В.А., Вишневский А.А. Центральная регуляция органной гемодинамики. СПб., 1992.
- 17. Leblanc J. Hormonal control of thermogenesis // Nonshivering thermogenesis: Proc. of symp. held in Prague, Apr. 1-2, 1970. Praga, 1971. P. 99-107.

ADRENOREACTIVITY AT ACUTE COLD SHOCK

M.N. Miruk, V.N. Ananiev

Institute for Biomedical Problems

The analysis of reactance of arteries of rabbits on mimetics after unitary cooling acute cold shock (ACS) has shown, that sensitivity an alpha-1-adrenoreceptors of arteries of skin-muscular area decreases on 6 % at simultaneous increase of quantity active an alpha-1- adrenoreceptors on 115%. It is revealed, that in arteries of kozhno-muscular area after unitary cooling sensitivity an alpha-2-adrenoreceptors on 66,5% decreases at increase of quantity active an alpha-2-adrenoreceptors on 150%. As a result of the spent researches it is proved, that at adaptation to a cold there is an increase in reactance of arteries exclusively at the expense of increase in them quantities active an alpha-1 and an alpha-2 adrenoreceptors. Though sensitivity of both types of receptors is lowered.

Key words: Acute cold shock (ACS), cold, cardiovascular system, blood circulation, rabbit.