БИОХИМИЯ

УДК 612.82+612.273.2

ПОСТНАТАЛЬНЫЕ ИЗМЕНЕНИЯ ГЛУТАМИНАЗНОЙ АКТИВНОСТИ В МОЗГЕ КРЫС, ПЕРЕНЕСШИХ ГИПОКСИЮ В ПЛОДНОМ ПЕРИОДЕ ПРЕНАТАЛЬНОГО РАЗВИТИЯ

Л.Б. Гадирова, Т.М. Агаев

Институт физиологии им А.И. Караева НАН Азербайджана

Исследовано влияние гипоксии, перенесенной в плодном периоде пренатального развития у крыс, на изменение активности фермента синтеза главного возбуждающего нейротрансмиттера — глутамата. Показано изменение активности фосфат-зависимой глутаминазы в различных областях коры головного мозга, гипоталамусе, мозжечке, среднем и продолговатом мозге крыс в разных периодах постнатального онтогенеза.

Ключевые слова: пренатальная гипоксия, мозг, крыса, фосфатзависимая глутаминаза.

Введение. Гипоксия, перенесенная самкой в различные сроки беременности, является стрессовым фактором, который может привести к развития нервной системы нарушению нормального потомства Существенность влияний постнатальном онтогенезе. на мозг внутриутробном периоде увеличивается в связи с тем, что его рост и развитие идет особенно интенсивно именно в этот период онтогенеза [2]. При этом наиболее резкие изменения в головном мозге происходят при действии неблагоприятных факторов в позднем пренатальном онтогенезе в период интеграции всех звеньев нейроэндокринной системы, что сказывается на формировании адаптивного поведения потомства [8; 10].

В позднем пренатальном периоде в различных структурах развивающегося мозга крыс интенсивно происходит процесс миграции, созревания и дифференцировки нейронов, а также установка межклеточных синапсов. Гипоксия в этот период развития может привести к необратимому нарушению механизмов кратковременной и долговременной памяти у взрослых животных. При этом причиной нарушений когнитивных функций мозга в процессе взросления могут быть изменения биохимических показателей и структурной организации нервной ткани различных отделов мозга [1; 3]. Перенесенная в этот период пренатальная гипоксия у детенышей крыс может вызвать стойкое нарушение взаимоотношений между нейронами коры и подкорковыми структурами, а также изменение синаптического аппарата нейронов мозга [1; 2].

Ряд исследований свидетельствует о том, что пренатальный стресс изменяет состояние нейрохимических механизмов головного мозга у взрослых потомков, при этом, как правило, изучались серотонин- и

катехоламинергические системы мозга [6; 14].

Согласно современным представлениям, нарушения функции нервной системы, связанные с участием глутамата, достаточно многообразны [4]. При этом большинство расстройств могут быть обусловлены нарушениями внутриутробного развития [2]. Изучение роли глутамата имеет большое значение в изучении молекулярных механизмов познавательных функций, обучения и памяти. Синтез глутамата в нейронах мозга катализирует фосфатучаствует формировании зависимая глутаминаза, которая глутаматергической синаптической передачи, а синтезируемый глутамат участвует в процессах нервной регуляции в качестве главного возбуждающего нейромедиатора пирамидных путей И корково-подкорковых центральной нервной системы [4; 11].

В настоящее время нет полных данных о характере протекания реакций превращения нейротрансмиттерного глутамата в нервных структурах развивающегося организма после перенесенной пренатальной гипоксии.

Исходя из этого, целью работы было изучение изменения активности глутаминазы в головном мозге крыс в постнатальном онтогенезе, развившихся в нормальных условиях и после воздействия гипоксии в плодном (на 16-21-е дни) периоде. При исследовании показателей метаболизма глутамата в данном исследовании показаны реакции различных корковых областей мозга и подкорковых структур — гипоталамуса, мозжечка, среднего и продолговатого мозга одно- и трехмесячных крыс на гипоксическое воздействие в пренатальный период развития.

Материал и методика. Эксперименты проведены на 120 самцах крыс линии Вистар в возрасте 1 и 3 месяца. Животные опытной группы были рождены самками, подвергнутыми действию гипоксии на 16-21-е сутки беременности. Срок беременности устанавливали по наличию сперматозоидов в вагинальном мазке самки. Гипоксию создавали в барокамере, вентилируемой смесью газов 5% O_2 и 95% N_2 . Гипоксию проводили ежедневно в течение 30 минут. В качестве контроля использовали потомство самок, содержавшихся в камере в аналогичные сроки беременности при нормальной концентрации O_2 . Исследование проводили на потомстве контрольных и экспериментальных самок. В течение всего периода эксперимента крыс содержали в обычных условиях вивария.

Головной мозг после декапитации крыс был извлечен из черепной коробки, промыт в физиологическом растворе и в условиях гипотермии разделен на структуры согласно стереотаксическому атласу мозга крыс [9; 15]. Гомогенат готовился на 0,32М сахарозе. Фракцию исходных митохондрий выделяли методом дифференциального центрифугирования [7]. Активность глутаминазы (КФ 3.5.1.2) определяли прямым фенол-гипохлоритным методом [5]. Ферментативную активность измеряли в мкмоль образовавшегося N–NH₃ за 1 час инкубации/мг белка митохондрий. Содержание общего белка измеряли по методу Бредфорд [13]. Статистическую обработку проводили с использованием программы Statistica. Достоверность различий определяли по t-критерию Стьюдента. Различия считались достоверными при р<0,05.

Резульматы и обсуждение. Как показали результаты экспериментов (таблица), в мозге крыс Вистар наибольшая активность фосфатзависимой глутаминазы наблюдается в корковых областях, тогда как в мозжечке и среднем мозге выявлена значительно меньшая активность фермента.

Таблица Изменение удельной активности глутаминазы в митохондриях различных областей мозга крыс после гипоксии на E16-E21 (мкмоль $N-NH_3$ час / мг белка, $M\pm m$; n=8)

Структуры мозга	Месячные крысы		Трехмесячные крысы	
	контроль	ОПЫТ	контроль	опыт
Сенсомоторная кора	21,95±2,04	14,47±1,84 P<0,01	29,1±2,98	23,35±1,88 P<0,05
Зрительная кора	22,83±2,59	17,79±2,45 P<0,05	30,2±2,61	27,11±2,79 P>0,05
Орбитальная кора	18,42±1,49	22,23±2,83 P<0,05	26,5±2,79	33,92±3,15 P<0,05
Лимбическая кора	24,56±2,79	29,18±2,35 P<0,05	27,0±1,34	24,40±2,45 P>0,05
Гипоталамус	17,26±1,36	15,71±1,84 P>0,05	24,2±1,45	17,74±2,40 P<0,05
Мозжечок	10,77±1,68	14,64±2,75 P<0,05	13,54±4,50	14,78±2,76 P>0,05
Средний мозг	11,70±2,26	12,51±1,84 P>0,05	15,45±3,19	15,87±2,45 P>0,05
Продолговатый мозг	15,36±1,68	16,75±1,93 P>0,05	19,98±2,57	18,27±2,84 P>0,05

Согласно полученным результатам, у месячных детенышей крыс, перенесших гипоксию в плодный период пренатального развития, в митохондриях различных структур головного мозга наблюдаются разнонаправленные изменения активности глутаминазы. Так, в митохондриях орбитальной, лимбической коры и мозжечка наблюдается возрастание активности фосфат-зависимой глутаминазы на 21%, 18% и 36% (р<0,05), соответственно, по сравнению с контролем. В зрительной и сенсомоторной коре отмечается снижение ферментативной активности на 22% (p<0,05) и 35% (p<0,01) по сравнению с контрольной группой животных. В гипоталамусе, среднем и продолговатом мозге изменения статистически недостоверны (p>0.05).

В трехмесячном периоде постнатального онтогенеза у крыс, перенесших гипоксию на 16 – 21-е сутки пренатального развития, наблюдается изменение удельной активности фосфат-зависимой глутаминазы, при этом в

некоторых структурах мозга отмечается тенденция к стабилизации ферментативной активности (таблица). Обнаружено повышение глутаминазной активности в орбитальной коре на 28% (Р<0,05), снижение в сенсомоторной коре на 20% (P<0,05) и гипоталамусе – на 27% (P<0,05). В мозжечке, среднем и продолговатом мозге, зрительной и лимбической коренаблюдаемые показатели активности фермента приближаются к данным контрольной группы животных.

Учитывая, что в мозге млекопитающих глутамат обладает нейромедиаторной активностью, понижение глутаминазной активности указывает на снижение потенциальных возможностей глутаматергической передачи в исследованных структурах мозга пренатально гипоксированных крыс. Кроме того, вызванные пренатальной гипоксией сдвиги показателей глутаминазной активности влияют на метаболизм глутамата, участвующего в биосинтезе ГАМК, аспартата и глутатиона, а также в энергетическом обмене клетки [12].

Исходя из полученных данных, наблюдаемое наибольшее повышение активности глутаминазы в мозжечке опытных крыс может быть связано с активацией как глутамат-, так и ГАМК-ергической систем и является адаптационно-компенсаторной реакцией мозга.

Гипоксия, перенесенная в плодный период, впоследствии, на разных этапах онтогенеза, нарушая нейромедиаторную деятельность сенсомоторной коры, может привести к изменению развития двигательного поведения в первый месяц постнатального онтогенеза, а изменения в орбитальной и лимбической коре могут сказаться на когнитивных функциях молодых и взрослых (половозрелых) крыс.

Таким образом, пренатальная гипоксия влияет на функциональное состояние нервных клеток, что в конечном итоге приводит к ряду изменений в обмене нейромедиаторного глутамата в раннем постнатальном онтогенезе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильев Д.С., Туманова Н.Л., Журавин И.А. Структурные изменения в нервной ткани новой коры в онтогенезе крыс после гипоксии на разных сроках эмбриогенеза // Эволюционная биохимия и физиология. 2008. Т. 44, №3. С.258 266.
- 2. Граф А.В., Гончаренко Е.Н., Соколова Н.А., Ашмарин И.П. Антенатальная гипоксия: участие в развитии патологий ЦНС в онтогенезе // Нейрохимия. 2008. Т. 25. С.11 16.
- 3. Журавин И.А., Дубровская Н.М., Туманова Н.Л. Постнатальное физиологическое развитие крыс после острой пренатальной гипоксии // Рос. физиол. журн. им. И.М. Сеченова. 2003. Т. 89, №5. С.522 532.
- 4. *Курбат М.Н.* L-Глутамат: современный взгляд на известную аминокислоту // Нейрохимия. 2009. Т.26, №3. C.202 207.
- 5. *Магарламов А.Г., Заикин А.А., Беляева Л.В.* Прямой фенолгипохлоритный метод определения глутаминазной активности // Украинский биохимический журн. 1979. Т. 51, №5. С.549 551.

- 6. *Маслова М.В., Граф А.В., Маклакова А.С.* Сравнительный анализ изменений содержания биогенных аминов в ЦНС и поведения у взрослых крыс, перенесших прогестационную гипоксию: коррекция комбинацией пептидов // Нейрохимия. 2004. Т. 21, №1. С.39 43.
- 7. Осадчая Л.М. Выделение субклеточных фракций из мозга крыс // Методы биохимических исследований. Л., 1982. С.36-37.
- 8. *Резников А.Г.* Перинатальная модификация развития нейроэндокринной системы: феномены и механизмы // Проблемы эндокринологии. 2004. Т. 50, N04. C.42-48.
- 9. *Светухина В.М.* Цитоархитектоника новой коры мозга в отряде грызунов // Архив анатомии, эмбриологии и гистологии. 1968. Т. 42, №2. С.31 45.
- 10. Шаляпина В.Г., Зайченко И.Н., Ордян Н.Э., Батуев А.С. Изменение нейроэндокринной регуляции приспособительного поведения крыс после стресса в позднем пренатальном онтогенезе // Рос. физиол. журн. им. И.М. Сеченова. 2001. Т. 57, № 9. С. 1193 1201.
- 11. *Daikhin Y., Yudkoff M.* Compartmentation of brain glutamate metabolism in neurons and glia // J. of Nutrition. 2000. V. 130. P. 1026 1031.
- 12. *Holten A.T., Gundersen V.* Glutamine as a precursor for transmitter glutamate, aspartate and GABA in the cerebellum: a role for phosphate-activated glutaminase // J. Neurochemistry. 2008. V. 104. P. 1032 1042.
- 13. *Kruger N.J.* The Bradford method for protein quantitation // The Protein Protocols Handbook / Ed J.M. Walker. NY, 2002. P. 15 21.
- 14. Moyer J.A., Herrenkohl L.R., Jacobowitz D.M. Stress during pregnancy: effect on catecholamines in discrete brain regions of offspring as adults // Brain Res. 1978. V. 144, №1. P. 173 178.
- 15. Pellegrino L.J., Pellegrino A.S., Cushman A.J. A stereotaxic atlas of the rat brain. NY, 1979.

POSTNATAL CHANGES OF GLUTAMINASE ACTIVITY IN THE BRAIN OF RAT EXPOSED TO HYPOXIA IN FETAL PERIOD OF PRENATAL ONTOGENESIS

L.B. Gadirova, T.M. Agayev

Garayev Institute of Physiology of Azerbaijan National Academy of Science

The impact of prenatal hypoxia in fetal period on activity of enzyme producer of the main exciting neurotransmitter – glutamate is investigated. Change of phosphate-activated glutaminase activity in various areas of cerebral cortex, hypothalamus, cerebellum, mesencephalon and myelencephalon of rats at different stages of postnatal development is revealed.

Key words: prenatal hypoxia, brain, rat, phosphate-dependent, phosphate-activated glutaminase.