ФИЗИКА МАГНИТНЫХ ЯВЛЕНИЙ

УДК 537.636

РАСЧЕТ ПАРАМЕТРОВ 180-ГРАДУСНЫХ ДОМЕННЫХ СТЕНОК БЛОХА И НЕЕЛЯ В МОНОКРИСТАЛЛЕ Nd₂Fe₁₄B

О.Б. Дёгтева, С.Р. Усманов

Тверской государственный университет кафедра магнетизма

Рассчитаны параметры 180-градусных доменных стенок Блоха и Нееля для одноосного монокристалла при различных температурах для двух способов представления энергии анизотропии: в виде ряда разложения по степеням направляющих косинусов вектора спонтанной намагниченности и в виде ряда разложения по сферическим гармоникам. Для каждого типа стенки расчеты производились с учетом одного или первых двух членов рядов.

Ключевые слова: доменные стенки Блоха и Нееля, энергия анизотропии, одноосные монокристаллы, Nd₂Fe₁₄B

CALCULATION OF THE PARAMETERS OF 180-DEGREE BLOCH AND NEEL DOMAIN WALLS IN Nd₂Fe₁₄B SINGLE CRYSTALS

O. B. Dyogteva, S. R. Usmanov

Tver State University Chair of Magnetism

Parameters of 180-degree Bloch and Neel domain walls of uniaxial crystals are calculated for different temperatures utilizing two types of anisotropy energy representations: in series of direction cosine powers and spherical harmonics expansion. For each domain wall the calculations were made making use of one or first two terms of the series.

Keywords: Bloch and Neel domain walls, anisotropy energy, uniaxial crystals, $Nd_2Fe_{14}B$

1. Введение. Для расчета плотности энергии и эффективной доменной границы необходимо учитывать ширины константы обменный параметр исследуемого анизотропии И материала. Исследования последних лет указывают на существенное влияние на получаемые результаты количества учитываемых членов ряда при анизотропии разложении энергии ПО возрастающим степеням направляющих косинусов вектора спонтанной намагниченности Is. В зависимости от этого константы анизотропии одного порядка

1

принимают значения, отличающиеся друг от друга в несколько раз по абсолютной величине, а иногда и по знаку [1]. Для корректного описания магнитокристаллической анизотропии редкоземельных соединений часто необходимо учитывать константы анизотропии высоких порядков.

Кроме упомянутого стандартного способа представления энергии анизотропии, хорошо известен альтернативный подход с использованием сферических гармоник [2]. Он обладает рядом преимуществ по сравнению со стандартным разложением. Функция $E_a = K_{n_X,n_Y,n_Z} \alpha_X^{n_X} \alpha_Y^{n_Y} \alpha_Z^{n_Z}$, содержащая четные степени направляющих косинусов $\alpha_X, \alpha_Y, \alpha_Z$ вектора **I**_s, не является ортогональной, поэтому величины констант анизотропии сильно зависят от числа членов ряда и константы анизотропии высоких порядков могут принимать значения, сопоставимые с величиной первой константы, что не имеет физического смысла. В то же время, ряд со сферическими гармониками

$$E_{a}(\theta) = \sum_{l=1}^{M} \chi_{2l,0} \left(\frac{4l+1}{4\pi} \right)^{\frac{1}{2}} P_{2l}^{0}(\cos \theta)$$
 является полностью сходящимся, и

значения коэффициентов анизотропии не зависят от числа учитываемых в разложении членов.

Расчеты, проведенные в [3], показали, что использование сферических гармоник действительно является более предпочтительным для анализа магнитокристаллической анизотропии магнетиков.

2. Расчет энергии и эффективной ширины доменной стенки Блоха

2.1. Расчет параметров 180°-ной доменной стенки Блоха классического энергии использованием представления Рассмотрим анизотропии. задачу 0 нахождении параметров одномерной доменной стенки Блоха в магнитоодноосном кристалле. Для описания разворота вектора Is в стенке достаточно только одной конфигурационной переменной θ – угла между вектором I_s и ОЛН. При заданных условиях получаем, согласно [4], выражения для зависимости координаты $x(\theta)$ при непрерывном развороте вектора **I**_s внутри стенки

$$x = \int_{0}^{\theta} \sqrt{\frac{a(\theta)}{G(\theta) - G_{\infty}}}$$
(1)

и плотности энергии стенки E_{G} как функции угла θ

$$E_G = \int_{\theta_1}^{\theta_2} \sqrt{[G(\theta) - G_\infty] \cdot a(\theta)} d\theta, \qquad (2)$$

G(θ) – плотность полной энергии магнетика, которую где В включаются все потенциалы, содержащие переменную θ , G_{∞} значение этой энергии на границах переходной области между доменами. В случае одномерной доменной стенки Блоха без учета магнитострикции $G(\theta) = E_a(\theta)$, $E_{a}(\theta)$ – энергия где магнитокристаллической анизотропии, которая В классическом представлении с учетом двух первых констант имеет вид

$$E_a(\theta) = K_1 \sin^2 \theta + K_2 \sin^4 \theta.$$
(3)

Функция $\theta(x)$ имеет только одну точку поворота, следовательно, формула для эффективной ширины доменной стенки по Лилли [5] имеет вид:

$$W_k = \frac{(\theta_2 - \theta_1) \cdot \sqrt{a(\theta)}}{\sqrt{G(\theta) - G_{\infty}}}.$$
(4)

Для расчетов этих параметров доменной стенки в монокристалле $Nd_2Fe_{14}B$ были взяты известные значения констант (K_1 и K_2) и коэффициентов ($\chi_{2,0}$ и $\chi_{4,0}$) анизотропии (табл. 1) при T = 148, 176 и 270 К.

			1 2	
	Константы анизотропии,		Коэффициенты анизотропии,	
<i>T</i> . K	МДж/м ³		ӍДж/м	
2	-K ₁	K_2	χ2,0	χ4,0
148	3,06	6,36	-10,9	1,72
176	4,05	4,09	-9,21	1,10
270	5 1 5	0 69	-6 28	0 19

Таблица 1. Константы и коэффициенты анизотропии для одноосного монокристалла Nd₂Fe₁₄B [8]

При непрерывном развороте вектора I_s в блоховской стенке значения угла θ изменяются в пределах $0 \le \theta \le \pi$. Конкретные выражения, использованные для расчетов функции $x(\theta)$, плотности энергии E_G и эффективной ширины W_k доменной стенки, имели вид

$$x = \int_{0}^{\theta} \sqrt{\frac{A}{K_1 \sin^2 \theta + K_2 \sin^4 \theta}} d\theta,$$
 (5)

$$E_G = \int_0^{\pi} \sqrt{A \cdot [K_1 \sin^2 \theta + K_2 \sin^4 \theta]} d\theta, \qquad (6)$$

$$W_{k} = \frac{\pi \cdot \sqrt{A}}{\sqrt{K_{1} \sin^{2} \frac{\pi}{2} + K_{2} \sin^{4} \frac{\pi}{2}}}.$$
(7)

Результаты расчетов функции $x(\theta)$ с использованием математического пакета Maple 12 представлены на рис. 1.

Эффективная ширина 180°- ной доменной границы, плотность ее энергии, рассчитанные с использованием выражений (6) и (7), в которых в выражении для $E_a(\theta)$ в первом случае учитывали только член с K_1 , а во втором случае – два члена с K_1 и K_2 , приведены в таблице 2. Расхождение значений W_h и E_G увеличивается с уменьшением температуры от 4-5% при 270 до 35-40 % при 148 К.

Рис. 1. Зависимость $\theta(x)$ при развороте вектора I_s в стенке Блоха, рассчитанная по (5): $-\Box$ - с учетом одной константы анизотропии; $-\Box$ - с учетом двух констант анизотропии при температурах T = 270 (*a*), 176 (*б*) и 148 К (*в*)

- 7 -

	E_G , Дж/м 2		W_h , hm	
<i>Т</i> , К	Одна	Две	Одна	Две
	константа	константы	константа	константы
148	2,85	4,36	7,3	4,2
176	3,28	4,22	6,4	4,5
270	3,71	3,86	5,6	5,3

Таблица 2. Параметры доменной стенки Блоха, рассчитанные с учетом одного и двух членов в разложении (3)

2.2. Расчет параметров 180°-ной доменной стенки Блоха с использованием разложения в ряд энергии анизотропии по сферическим гармоникам. Общее выражение для энергии анизотропии, записанное через сферические гармоники, представлено в [6]. Ряд (8) содержит произвольное число коэффициентов без учета анизотропии в базисной плоскости:

$$E_{a}(\theta) = \sum_{l=1}^{M} \chi_{2l,0} \left(\frac{4l+1}{4\pi}\right)^{\overline{2}} P_{2l}^{0}(\cos\theta), \qquad (8)$$

где $\chi_{2l,0}$ – коэффициенты анизотропии, а $P_{2l}^0(\cos \theta)$ – полином Лежандра, содержащий только четные члены в разложении. В общем случае он имеет вид:

$$P_l^0(\cos\theta) = \frac{1}{2^l l!} \left(\frac{d}{d(\cos\theta)}\right)^l (\cos^2\theta - 1)^l, \qquad (9)$$

или его можно представить в виде суммы [10]

$$P_l^0(\cos\theta) = \frac{1}{2^l} \sum_{k=0}^{E\left(\frac{l}{2}\right)} \frac{(-1)^k (2l-2k)!}{k! (l-k)! (l-2k)!} \cos^{l-2k}(\theta).$$
(10)

Используя последнее соотношение, выражение для $P_{2l}^0(\cos\theta)$ можно записать в виде

(1)

$$P_{2l}^{0}(\cos\theta) = \frac{1}{2^{2l}} \sum_{k=0}^{l} \frac{(-1)^{k} (4l-2k)!}{k! (2l-k)! (2l-2k)!} \cos^{2l-2k}(\theta).$$
(11)

Тогда выражение для энергии анизотропии примет вид:

$$E_{a}(\theta) = \sum_{l=1}^{M} \chi_{2l,0} \left(\frac{4l+1}{4\pi} \right)^{\frac{1}{2}} \frac{1}{2^{2l}} \sum_{k=0}^{l} \frac{(-1)^{k} (4l-2k)!}{k! (2l-k)! (2l-2k)!} \cos^{2l-2k}(\theta).$$
(12)

В данной работе для расчета энергии анизотропии использовалось выражение (12) с учетом двух первых членов ряда. В этом случае выражение (12) приобретает вид:

$$E_{a}(\theta) = \frac{1}{4} \sqrt{\frac{5}{\pi}} \left(3\cos^{2}\theta - 1 \right) \chi_{2,0} + \frac{3}{16\sqrt{\pi}} \left(35\cos^{4}\theta - 30\cos^{2}\theta + 3 \right) \chi_{4,0} \quad (13)$$

Так же, как и в предыдущем случае, были рассчитаны параметры доменной стенки Блоха в монокристалле $Nd_2Fe_{14}B$ с использованием общих формул (1), (2), (4) и выражения (13).

При определении зависимости $\theta(x)$ и плотности граничной энергии были взяты известные значения $\chi_{2,0}$ и $\chi_{4,0}$ (табл. 1) при T = 148, 176 и 270 К.

При непрерывном повороте вектора I_s в блоховской стенке значения угла $\theta(x)$ изменяются в пределах $0 \le \theta \le \pi$. Функция $\theta(x)$ (рис. 2), плотность энергии E_G и эффективная ширина W_k доменной стенки рассчитывались по формулам (14), (15), (16) с использованием математического пакета Maple 12 для каждого значения температуры:

$$x = \int_{0}^{\theta} \sqrt{\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^{2}\theta)\chi_{2,0} + \frac{3}{16\sqrt{\pi}}(35\cos^{4}\theta - 30\cos^{2}\theta)\chi_{4,0}}}, \quad (14)$$

$$E_{G} = \int_{0}^{\pi} \sqrt{A \cdot [\sqrt{\frac{5}{\pi}}(3\cos^{2}\theta)\chi_{2,0} + \frac{3}{16\sqrt{\pi}}(35\cos^{4}\theta - 30\cos^{2}\theta)\chi_{4,0}]} d\theta, \quad (15)$$

$$W_{k} = \frac{\pi \cdot \sqrt{A}}{\sqrt{\frac{5}{\pi} (3\cos^{2} 0)\chi_{2,0} + \frac{3}{16\sqrt{\pi}} (35\cos^{4} 0 - 30\cos^{2} 0)\chi_{4,0}}}.$$
 (16)

Так же, как в предыдущем разделе, были определены по формулам (15) и (16) эффективная ширина 180°- ной доменной границы, плотность ее энергии в двух случаях: в первом случае в выражении (13) учитывали только член с $\chi_{2,0}$, а во втором случае – два члена с $\chi_{2,0}$ и $\chi_{4,0}$. Эти данные приведены в таблице 3. Расхождение значений W_h и E_G меньше, чем в предыдущем случае, и увеличивается с уменьшением температуры от 4% при 270 до 15% при 148 К.

Рис. 2. Зависимость $\theta(x)$ при развороте вектора I_s в стенке Блоха, рассчитанная по (14): $-\Box$ - с учетом одного коэффициента анизотропии, $-\blacksquare$ - с учетом двух коэффициентов анизотропии при температурах T = 270 (*a*), 176 (*б*) и 148 K (*в*)

Таблица 3. Параметры доменной стенки Блоха, рассчитанные с учетом одного и двух членов в разложении (13)

	E_{G} , Дж/м 2		W_h , HM	
<i>T</i> , K	Один коэффициент	Два коэффициента	Один коэффициент	Два коэффициента
148	6,47	5,51	3,2	4,2
176	5,7	5,01	3,7	4,5
270	4,17	4,02	5	5,3

July N

3. Расчет энергии и эффективной ширины доменной стенки Нееля. Для расчета одномерной доменной стенки в одноосном ферромагнетике без учета магнитоупругого взаимодействия требуется решить вариационную задачу $\delta E_G = 0$, где полная энергия E_G равна:

$$E_G = \int_{-\infty}^{+\infty} (e_A + e_K) dx + e_s.$$
(17)

В (17) учтены вклады от обменной энергии e_A , энергии анизотропии e_K , и энергии собственных магнитных полей рассеяния e_s .

При рассмотрении стенок Блоха предполагается, что при переходе через стенку нормальная составляющая вектора I_s не испытывает изменений, поскольку в этом случае полная магнитостатическая энергия минимальна.

Поэтому при расчетах классических блоховских стенок энергия полей рассеяния не учитывается. Однако, если мы имеем дело с тонкопленочными магнетиками, при таком распределении спинов в месте выхода доменной стенки на поверхность тонкой плёнки появляются магнитные полюсы и магнитостатическая энергия увеличивается. Неель предположил, что в данном случае вектор I_s в границе, вероятнее всего, разворачивается с нарушением правила непрерывности нормальной составляющей; при этом оказывается более выгодным поворот в плоскости пленки.

Рассчитаем поверхностную энергию стенки Нееля в случае одноосной анизотропии, используя различные представления энергии анизотропии. Для расчета нам понадобится выражение для энергии полей рассеяния. Как показал Хуберт [4], для одномерной плоской задачи её легко вычислить. В общем виде магнитостатическую энергию можно записать в виде:

 $e_s = 2\pi I_s^2 \left[\sin \vartheta - \overline{\sin \vartheta}\right]^2, \qquad (18)$

где

$$\overline{\sin \vartheta} = \frac{1}{2} (\sin \vartheta_1 + \sin \vartheta_2)$$
(19)

 ϑ_1 , ϑ_2 – значения углов между вектором I_s и ОЛН в левом и правом доменах.

Важнейшим свойством уравнения (18) является отсутствие производных намагниченности – следствие предположения о плоских и одномерных стенках. Поэтому мы можем энергию полей рассеяния добавить к энергии анизотропии $G(\mathfrak{G})$ и тем самым вернуться к развитой общей теории.

3.1 Расчет параметров 180°-ной доменной стенки Нееля использованием классического представления энергии анизотропии. При непрерывном развороте вектора I_s в неелевской стенке значения угла θ изменяются в пределах $0 \le \theta \le \pi$. Конкретные выражения, использованные для расчетов функции $x(\theta)$, плотности энергии E_G и эффективной ширины W_k доменной стенки, имели вид:

$$x = \int_{0}^{9} \sqrt{\frac{A}{(K_{1} + 2\pi I_{s}^{2})\sin^{2}9 + K_{2}\sin^{4}9}} d9,$$
 (20)

$$E_{G} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{A \cdot [(K_{1} + 2\pi I_{s}^{2})\sin^{2}9 + K_{2}\sin^{4}9]} d9,$$
 (21)

$$W_{k} = \frac{\pi \cdot \sqrt{A}}{\sqrt{(K_{1} + 2\pi I_{s}^{2})\sin^{2}\frac{\pi}{2} + K_{2}\sin^{4}\frac{\pi}{2}}}.$$
 (22)

Результаты расчетов функции $x(\theta)$ с использованием математического пакета Maple 12 представлены на рис. 3 для монокристалла Nd₂Fe₁₄B ($|\mathbf{I}_{s}| = 1275 \ \Gamma c$).

Эффективная ширина и плотность энергии 180° -ной доменной границы, рассчитанные с использованием выражений (21) и (22), в которых в первом случае учитывали только член с K_1 , а во втором случае – два члена с K_1 и K_2 , приведены в таблице 4. Расхождение результатов для значений W_h и E_G увеличивается с уменьшением температуры от 4% при 270 до 37% при 148 К.

	E_G , Дж/м 2		W_h , нм	
<i>T</i> , K	Одна	Две	Одна	Две
	константа	константы	константа	константы
148	3,29	4,7	6,3	4
176	3,67	4,54	5,7	4,2
270	4,05	4,21	5,2	4,9

Таблица 4. Параметры доменной стенки Нееля, рассчитанные с учетом одного и двух членов в разложении (3)

Рис. 3. Зависимость $\vartheta(x)$ при развороте вектора I_s в стенке Нееля, рассчитанная по (20): $-\Box$ - с учетом одной константы анизотропии, $-\Box$ - с учетом двух констант анизотропии при температурах T = 270 (*a*), 176 (*б*) и 148 К (*в*)

3.2. Расчет параметров 180°-ной доменной стенки Нееля с использованием разложения в ряд энергии анизотропии по сферическим гармоникам. Так же, как и в предыдущем случае, были рассчитаны параметры доменной стенки Нееля в монокристалле Nd₂Fe₁₄B с использованием общих формул (1), (2), (4) и выражения (13), учитывая вклад магнитостатической энергии.

При определении зависимости $\vartheta(x)$ и плотности граничной энергии были взяты известные значения $\chi_{2,0}$ и $\chi_{4,0}$ (табл.1) при комнатной температуре. При непрерывном повороте вектора \mathbf{I}_s в Неелевской стенке значения угла $\vartheta(x)$ изменяются в пределах $0 \le \vartheta \le \pi$. Функция $\vartheta(x)$ (рис. 4), плотность энергии E_G и эффективная ширина W_k доменной стенки рассчитывались по формулам (23), (24), (25) с использованием математического пакета Maple 12:

- 13 -

Рис. 4. Зависимость $\vartheta(x)$ при развороте вектора I_s в стенке Нееля, рассчитанная по (23): - - с учетом одного коэффициента анизотропии, --- с учетом двух коэффициентов анизотропии при температурах T = 270 (*a*), 176 (*б*) и 148 К (*в*)

Один

коэффициент

Т. К

Так же, как в предыдущем разделе, были в двух случаях определены по формулам (24) и (25) эффективная ширина и плотность энергии 180°-ной доменной границы: в первом случае в выражении (23) учитывали только член с $\chi_{2,0}$, а во втором случае – два члена с $\chi_{2,0}$ и $\chi_{4,0}$. Результаты приведены в таблице 5. Значения W_h и E_G различаются в меньшей степени, чем в предыдущем случае. Расхождение увеличивается с уменьшением температуры от 5 % при 270 до 15 % при 148 К.

	7
10	
\sim	

Та	Таблица 5. Параметры доменной стенки Нееля, рассчитанные с учетом одного и двух членов в разложении (13)			
	$E_{_G}$, Дж/м 2	W_h , HM		

Один

коэффициент

Два

коэффициента

Два

коэффициента

	148	6,26	5,26	3,3	4,4	
	176	5,45	4,73	3,8	4,8	
	270	3,83	3,66	5,5	5,8	
Полученные результаты расчетов эффективной ширины W_h и						
плотности энергии E _G доменных границ блоховского и неелевского						
типов с использованием двух альтернативных способов представления						
2	энергии анизотропии магнитоодноосного магнетика показывают, что					

эти параметры при комнатной температуре практически не зависят от способа расчета. Более того, значения Е_G для границ Блоха и Нееля очень близки, что позволяет сделать предположение о возможности сосуществования границ двух типов, а также границ смешанного типа в массивных одноосных магнетиках. Различия значений W_h и E_G в зависимости от числа членов ряда разложения энергии анизотропии по степеням направляющих косинусов вектора Is и по сферическим гармоникам проявляются температуры. при понижении Эта особенность обусловлена различным видом температурных зависимостей констант и коэффициентов анизотропии разных порядков.

Работа выполнена при поддержке гранта РФФИ № 09-02-01274.

- 15 -

Список литературы

- Wolfers P., Bacmann M., Fruchart D. Single crystal neutron diffraction investigations of the crystal and magnetic structures of R₂Fe₁₄B (R=Y, Nd, Ho, Er) // J. Alloys Comp. 2001. V. 317–318. P. 39–43.
- Verhoef R., France J. J. M., Menovsky A. A., Radwanski R. J., Ji Songquan, Yang Fu-ming, Li H. S., Gavigan J. P. High-field magnetization measurements on R₂Fe₁₄B single crystals // J. Phys. (France) 1988. V. 49. P. 565–566.
- Рыбак А. А., Скоков К. П., Медведева О. Н., Супонев Н. П., Пастушенков Ю. Г., Определение констант и коэффициентов анизотропии высоких порядков методом вращающих моментов // Материалы Всероссийской школы-семинара «Магнитная анизотропия и гистерезисные свойства редкоземельных сплавов». Тверь. 2003. С. 49–56.
- 4. Хуберт А. Теория доменных стенок в упорядоченных средах. М.: Мир. 1977.
- 5. Lilley B. A., Energies and Widths of Domain Boundaries in Ferromagnetics. Phil. Mag. 1950. V. 41. P. 792.
- 6. Birss R. R., Keeler G. J. The advantages of using spherical harmonics to analyze data on magnetocrystalline anisotropy and other non-linear anisotropic properties // Phys. stat. sol. 1974. V. 64. P. 357–366.
- 7. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1962.
- Bolzoni F., Moze O., and Pareti L. First-order field-induced magnetization transitions in single-crystal Nd₂Fe₁₄B // J. Appl. Phys. 1987. V. 62. P. 615–620.

Об авторах:

ДЁГТЕВА Ольга Борисовна – кандидат физ.-мат.наук, доцент кафедры магнетизма ТвГУ, Olga.Dyogteva@tversu.ru;

УСМАНОВ Сергей Равильевич – магистр кафедры магнетизма У.

- 16 -