УДК 53.043

МАГНИТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ В МНОГОСЛОЙНЫХ ГЕТЕРОСТРУКТУРАХ БИМОРФ ЦТС – НИКЕЛЬ-ЦИНКОВЫЙ ФЕРРИТ

Д. Ю. Карпенков¹, А. Ю. Карпенков¹, А. А. Богомолов², А. В. Солнышкин², В. А. Головнин³, Ю. Г. Пастушенков¹

¹ Тверской государственный университет, *кафедра магнетизма* ² Тверской государственный университет, *кафедра сегнетоэлектриков и пьезоэлектриков* ³ Научно-исследовательский институт «ЭЛПА», Зеленоград

Приводятся результаты экспериментальных исследований магнитоэлектрических свойств слоистых гетероструктур биморфа ЦТС-46 и Ni-Zn ферритов. Исследованы зависимости магнитоэлектрического отклика от конфигурации слоев композитов, переменного и постоянного поля. Показано, что увеличение количества слоев пьезоактивного материала приводит к пропорциональному росту магнитоэлектрического отклика. МЭ эффект на прямоугольных образцах в несколько раз меньше, чем на дисковых, благодаря чему последние более эффективны при использовании в датчиках постоянных или медленно меняющихся полей.

Ключевые слова: магнитоэлектрический эффект, многослойные гетероструктуры, пьезокерамические биморфы, Ni-Zn ферриты

Магнитоэлектрические (МЭ) эффекты в композитных планарных структурах, содержащих механически связанные ферромагнитные и ферроэлектрические слои, интенсивно исследуют в последнее время в связи с перспективами их использования в датчиках магнитных полей, генераторах и преобразователях напряжения [1–5]. МЭ эффект возникает благодаря комбинации магнитострикции и пьезоэффекта и проявляется в виде генерации электрического напряжения U на гранях структуры при её помещении в переменное магнитное поле [6]. МЭ эффект характеризуется коэффициентом МЭ-преобразования. МЭ коэффициент по напряжению вычисляется из соотношения:

$$\alpha_E = \frac{E_3}{H_1} \tag{1}$$

где H_1 – переменное магнитное поле, E_3 – напряженность электрического поля, определяемая известным соотношением

$$E_3 = \frac{U_0}{d} \quad , \tag{2}$$

где d – толщина пьезоэлектрического элемента, $U_0 = U/k$, U – напряжение на выходе усилителя, k – коэффициент его усиления.

Вестник ТвГУ. Серия "Физика". 2011. Выпуск 13

В работе приводятся результаты экспериментальных исследований магнитоэлектрических свойств слоистых гетероструктур биморфа ЦТС-46 и Ni-Zn ферритов состава Ni_{0,8}Zn_{0,2}Fe₂O₄. Исследованы зависимости магнитоэлектрического отклика от конфигурации слоев композитов, переменного и постоянного полей.

Методика эксперимента. Исследуемые образцы помещали внутрь соленоида, создающего переменное магнитное поле в интервале 0...10Э расположенного внутри второго И соленоида, предназначенного для получения однородного постоянного магнитного поля в диапазоне 0...1500 Э. Переменное и постоянное поля были направлены параллельно плоскости слоев. Сигнал от задающего генератора синусоидальных напряжений с максимальной частотой f = 220 кГц подавался на соленоид переменного поля. Соленоид постоянного поля был подключен к программируемому источнику тока АКИП 1118. Напряжение U с электродов образца регистрировалось измерительным комплексом, включающим компьютер с установленной платой сбора данных и вольтметр для контроля сигнала. Параллельно проводились измерения частоты подаваемого сигнала, а также переменного тока контроля стабильности возбуждающего лля переменного поля.

Изготовление образцов. В исследованиях использовались двух, четырех и шестислойные структуры чередующихся слоев никельцинкового феррита состава $Ni_{0,8}Zn_{0,2}Fe_2O_4$ (НЦФ) и слоев предварительно поляризованных биморфных пластинок цирконататитаната свинца ЦТС-46. В качестве материала для образования сильной механической связи и электрического контакта между слоями использовался электропроводящий эпоксидный клей CW2460.

На рис. 1 представлена геометрия образцов и ориентация векторов поляризации.

Рис.1. Исследуемые образцы и ориентация векторов поляризации

Геометрические размеры и состав слоев исследуемых композитов приведены в табл. 1 и 2.

Nº	Количество пьезоактивных слоев; состав	Количество магнитострикционных слоев; состав	Толщина слоев пьезокерамики , мм	Толщина слоев магнитной керамики, мм	Линейные размеры Д×Ш×Т, мм
1	1; Биморф ЦТС-46	1; Ni-Zn феррит	0,2	0,3	28×9×0,5
2	2; Биморф ЦТС-46	1; Ni-Zn феррит	0,2	0,3	28×9×0,7
3	3; Биморф ЦТС-46	2; Ni-Zn феррит	0,2	0,3	28×9×1,2

Таблица 1. Геометрические размеры и состав слоёв образцов № 1-3

Таблица 2. Геометрические размеры и состав слоёв образцов № 4-6

Nº	Количество пьезоактив- ных слоев; состав	Количество магнитострикционных слоев; состав	Толщина слоев пьезокерамики , мм	Толщина слоев магнитной керамики, мм	Линейные размеры Диаметр × Т, мм
4	1; ЦТС-46	1; Ni-Zn феррит	0,1	0,3	180,4
5	2; ЦТС-46	1; Ni-Zn феррит	0,1	0,3	18×0,5
6	3; ЦТС-46	2; Ni-Zn феррит	0,1	0,3	18×0,9

Результаты исследований. В отсутствие постоянного подмагничивающего поля на всех образцах наблюдается магнитоэлектрический отклик, частота которого равна удвоенной частоте напряжения, подаваемого на соленоид переменного поля (рис. 2, *a*), причем удвоение частоты отклика происходит во всём диапазоне применяемых полей. Это указывает на магнитострикционную природе наблюдаемого магнитоэлектрического отклика.

При приложении постоянного смещающего магнитного поля наблюдается искажение формы магнитоэлектрического отклика и изменение его амплитуды (рис. 2).

Необходимо отметить наличие перехода от отклика с удвоенной частотой к отклику, совпадающему по частоте с возбуждающим переменным магнитным полем (рис. 2, *г*).

Рис.2. Формы магнитоэлектрического отклика образца № 6, полученные на частоте 1,5 кГц при различных значениях постоянного поля

На рис. 3 представлена зависимость магнитоэлектрического отклика от величины напряженности постоянного магнитного поля на частоте одного из резонансов: образец \mathbb{N}_2 3, $f_{\text{pes}} = 68,38$ кГц (*a*), образец \mathbb{N}_2 6, $f_{\text{pes}} = 220$ кГц (б). При изменении частоты внешнего переменного магнитного поля наблюдаются резонансы магнитоэлектрического отклика. Это обусловлено возбуждением собственных акустических колебаний в образце, что приводит к резонансному возрастанию амплитуды деформаций и, как следствие, к увеличению МЭ сигнала.

На различных резонансных частотах проведено измерение магнитоэлектрического отклика и выполнен расчет магнитоэлектрического коэффициента α_E . Результаты представлены в табл. 3 и 4.

7

a

Рис. 3. Зависимость магнитоэлектрического отклика от напряженности постоянного магнитного поля на частоте одного из резонансов: (*a*) образец № 3, $f_{pes} = 68,38$ кГц, (б) образец № 6, $f_{pes} = 220$ кГц

На рис. 4 представлена зависимость магнитоэлектрического отклика от напряженности переменного модулирующего магнитного поля на частоте одного из резонансов: (*a*) образец № 3, $f_{pe3} = 68,38$ кГц, (б) образец № 6, $f_{pe3} = 220$ кГц.

Рис. 4. Зависимость магнитоэлектрического отклика от напряженности переменного модулирующего магнитного поля на частоте одного из резонансов: (*a*) образец № 3, $f_{pes} = 68,38$ кГц, (б) образец № 6, $f_{pes} = 220$ кГц

Вестник ТвГУ. Серия "Физика". 2011. Выпуск 13

	Образец № 1			Образец № 2		Образец № 3				
	Частота, Гц	U _{вых} , мВ	B/(cm $\Im)\alpha_{E}$,	Частота, Гц	U _{вых} , мВ	$B/(cM \ \Im)\alpha_E,$	Частота, Гц	U _{вых} , мВ	В/(см Э)α _E ,	4
_	160700	11,98	0,55	186300	10,05	0,23	190000	9	0,14	
-	15400	10,1	0,46	180400	13,1	0,3	183560	10,1	0,15	
-	145740	14,2	0,65	144740	10,7	0,24	172140	9,8	0,15	-
	140420	15,3	0,7	115200	16,38	0,37	162940	12,3	0,19	-
-	12770	17,9	0,82	96500	12,1	0,28	152330	12	0,18	-
-	79100	30,6	1,4	81140	22,54	0,52	94450	17,5	0,27	-
-	35760	26,21	1,2	63420	57,6	1,32	71130	58,68	0,9	-
-	720	1,8	0,08	54840	20	0,46	68380	96,7	1,48	-
-	520	6,05	0,28	31890	34,2	0,78	50,53	11,3	0,17	-
-				23380	32	0,73	46610	17,06	0,26	-
							34320	15	0,23	-
							31490	20	0,31	-
			N				26890	16,4	0,25	
-							22610	17,5	0,27	-
-							22030	22,5	0,34	-
							11867	23,5	0,36	-
							8586	24,75	0,38	-
							8037	29	0,44	-
							3560	31,7	0,48]
XON										

Таблица 3. МЭ отклик и коэффициенты α_{*E*} прямоугольных образцов № 1–3 на разных резонансных частотах

Образец №4			0	бразец Л	<u>•</u> 5	Образец №6			
Частота, Гц	U _{вых} , мВ	$\alpha_{E}, B/(cM \Im)$	Частота, Гц	U _{bbix} , MB	α _E , B/(cм Э)	Частота, Гц	U _{bbix} , MB	$\alpha_{\rm E}, { m B/(cm~}\Im)$	
187000	161	14,74	200000	330	15,11	230000	558	17,03	
153380	205	13,77	148760	92	4,21	163220	189	5,77	
34310	27	2,47				145680	30,45	0,93	

Таблица 4. МЭ отклик и коэффициенты α_E дискообразных образцов № 4–6 на разных резонансных частотах

Стоит отметить линейный характер полученной зависимости магнитоэлектрического отклика от модулирующего поля.

Ниже представлены результаты сравнения магнитоэлектрического отклика от композиции образцов (рис. 5).

Рис. 5. Зависимость магнитоэлектрического отклика от частоты. На графиках приведены значения эффекта на резонансных частотах для прямоугольных (*a*) и дискообразных (*б*) образцов композитов ЦТС-46/NiZn-феррит. Амплитудное значение переменного магнитного поля составляло 1,54 Э

Как и ожидалось, увеличение числа слоев пьезоактивных элементов приводит к пропорциональному росту значений отклика. Наблюдается также незначительное увеличение коэффициента α_E .

Выводы. В ходе проведенных исследований были определены значения магнитоэлектрического коэффициента для слоистых гетероструктур со слоями биморфа ЦТС и никель-цинкового феррита состава Ni_{0,8}Zn_{0,2}Fe₂O₄. Установлено, что при увеличении количества слоев пьезоактивного материала величина магнитоэлектрического

Вестник ТвГУ. Серия "Физика". 2011. Выпуск 13

отклика возрастает соответственно. Сравнительный анализ результатов измерений показал, что на дисковых образцах МЭ эффект в несколько раз больше, чем на образцах прямоугольной формы. Это позволяет сделать вывод о том, что для проектирования датчиков постоянных или медленно меняющихся полей эффективнее будет использование образцов дискоообразной формы.

Работа выполнена при поддержке программы Министерства образования и науки РФ «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы.

Список литературы

1. Фетисов Ю.К. Магнитоэлектрический эффект в многослойных структурах ферромагнетик–пьезоэлектрик и его применения в электронике // Изв. РАН. Сер. Физ. 2007. Т. 71, № 11. С. 1667–1669.

2. Nan C.-W., Bichurin M.I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions // J. Appl. Phys. 2008. V. 103. P. 031101.

3. Буш А.А., Шкуратов В.Я., Черных И.А.. Фетисов Ю.К. Тостопленочные слоистые композитные структуры цирконат-титанат свинца-феррит никеля-цинка: получение методом сеткотрафаретной печати и магнитоэлектрические своства // ЖТФ. 2010. Т. 80, № 3. С. 69–76.

4. Fetisov Y.K., Bush A.A, Kamentsev K.E., Srinivasan G. Pyroelectric effect in magnetoelectric multilayer composites // Solid State Commun. 2004. V. 132. P. 319–324.

5. Бичурин М.И., Петров В.М., Аверкин С.В., Филиппов А.В. Электромеханический резонанс в магнитоэлектрических слоистых структурах // ФТТ. 2010. Т. 52, № 10. С. 1975–1980.

6. Буш А.А., Каменцев К.Е., Мещеряков В.Ф. Фетисов Ю.К., Чашин Д.В., Фетисов Л.Ю. Низкочастотный магнитоэлектрический эффект в композитной планарной структуре галфенол-цирконат-титанат свинца // ЖТФ. 2009. Т. 79, № 9. С. 71–77.

7. Рабкин Л.И., Соскин С.А., Эпштейн Б.Ш. Ферриты // М.: Энергия, 1968, с 381.

8. Остащенко А.Ю., Преображенский В.Л., Pernod P. Магнитоэлектрический эффект в асимметричной слоистой структуре магнетик-пьезоэлектрик. // ФТТ. 2008. Т. 50, вып. 3. С. 446.

9. Филиппов Д.А., Бичурин М.А., Петров В.М., Поддубная Н.Н., Srinivasan G. Гигантский магнитоэлектрический эффект в композиционных материалах в области электромеханического резонанса // Письма в ЖТФ. 2004. Т. 30, № 1. С. 15–20.

MAGNETOELECTRIC EFFECT IN MULTILAYER BIMORPH LZT – NICKEL-ZINC FERRITE HETEROSTRUCTURES

D. Yu. Karpenkov¹, A. Yu. Karpenkov¹, A. A. Bogomolov², A. V. Solnyshkin², V. A. Golovnin³, Yu. G. Pastushenkov¹

¹Tver State University, *Chair of Magnetism* ²Tver State University, *Chair of Physics of Ferroelectrics and Piezoelectrics* ³Research Institute «ELPA», *Zelenograd*

The results of an experimental study of magnetoelectric properties of laminated bimorph heterostructures of LZT-46 and $Ni_{0.8}Zn_{0.2}Fe_2O_4$ ferrites are presented. The dependence of magnetoelectric response on the configuration of the layers of the composites and AC and DC fields are examined. It is shown that magnetoelectric response increases in proportion with the increase of the number of piezoactive layers. The magnetoelectric effect in rectangular samples is smaller than in disk-shaped ones, so the latter are more effective for the applications in sensors of steady or slowly varying fields.

Keywords: magnetoelectric effect, multilayer heteristructures, piezoceramic bimorphs, Ni-Zn ferrites

Об авторах:

КАРПЕНКОВ Дмитрий Юрьевич – аспирант кафедры магнетизма ТвГУ, 170100, г. Тверь, ул. Желябова, 33, *e-mail:* karpenkov_d_y@mail.ru;

КАРПЕНКОВ Алексей Юрьевич – аспирант кафедры магнетизма ТвГУ;

БОГОМОЛОВ Алексей Алексеевич – доктор физикоматематических наук, профессор кафедры физики сегнетоэлектриков и пьезоэлектриков, 170100, г. Тверь, ул. Желябова, 33, *e-mail:* Alexsey.Bogomolov@tversu.ru;

СОЛНЫШКИН Александр Валентинович – кандидат физикоматематических наук, доцент кафедры физики сегнетоэлектриков и пьезоэлектриков, *e-mail*: a.solnyshkin@mail.ru;

ГОЛОВНИН Владимир Алексеевич – кандидат физ.-мат. наук, начальник лаборатории ОАО НИИ "ЭЛПА", 124460 Москва, Зеленоград, Северная промышленная зона, Панфиловский проспект, д.10, *e-mail:* golovnin41@rambler.ru;

ПАСТУШЕНКОВ Юрий Григорьевич – доктор физ.-мат. наук, профессор, заведующий кафедрой магнетизма ТвГУ, *e-mail:* yupast@mail.ru.