УДК 519.6,517.9

ЭКСТРЕМУМ ЭНЕРГИИ ВРАЩАЮЩЕЙСЯ НАМАГНИЧЕННОЙ ГРАВИТИРУЮЩЕЙ КОНФИГУРАЦИИ КАК УСЛОВИЕ РАВНОВЕСИЯ

Цветков В.П.

Кафедра общей математики и математической физики

Поступила в редакцию 01.02.2011, после переработки 20.02.2011.

В работе показана эквивалентность принципа экстремума полной энергии вращающейся намагниченной гравитирующей конфигурации и уравнения гидростатического равновесия в форме (14), (15).

The work shows the equivalency of the extremum total energy principle of a rotating magnetized gravitating configuration and the hydrostatic equilibrium equation, demonstrated in (14), (15).

Ключевые слова: принцип экстремума, энергия, намагниченная гравитирующая конфигурация, уравнения гидростатического равновесия. Keywords: principle of extremum, energy, magnetized gravitating configuration, hydrostatic equilibrium equation.

Введение

Математическая теория фигур равновесия вращающихся равновесных гравитирующих систем представляется актуальной прежде всего с ее значением для астрофизики и космологии.

Классическим подходом решения данной задачи является развитие методов исследования уравнений гидростатического равновесия этих конфигураций [1, 2, 3].

Одним из важнейших применений теории фигур равновесия это модели пульсаров - быстровращающихся нейтронных звезд с сильным магнитным полем [3].

Поскольку равновесные намагниченные конфигурации возможны лишь при определенной геометрии внутреннего магнитного поля, то возникает непростой вопрос о способах учета магнитных полей в уравнениях, описывающих эти конфигурации. Дело в том, что магнитные натяжения не имеют потенциального характера.

Нами в данной работе предлагается магнитные натяжения учитывать включением магнитной энергии E_m в выражение полной энергии E конфигурации.

Принцип экстремальности E позволяет свести задачу о равновесных конфигурациях к поиску и исследованию характера критических точек, в которых этот экстремум имеет место.

Тем самым возникает точно такая же постановка задачи, что и в математической теории катастроф [4, 5], которая является одной из мощных современных методов исследования динамики сложных систем. В ней основное внимание уделяется исследованию критических точек систем, их классификации и поведению систем вблизи этих точек. Использование же диаграммного метода делает простым и наглядным качественное понимание характера динамики данных систем.

Одновременно характер критических точек позволяет сделать заключение об устойчивости конфигурации в этих точках. Устойчивым состояниям соответствуют точки минимума, а не устойчивым точки максимума или седловые точки.

Реализация намеченной нами программы требует аналитического представления E для поиска и исследования критических точек конфигураций. Эта задача решается на основе разработанного в работе [6] метода аналитического вычисления внутреннего гравитационного потенциала Φ возмущенных эллипсоидальных конфигураций, реализованного в виде пакета символьно-численных программ в системе MAPLE [7, 8].

Необходимо отметить несомненное преимущество энергетического подхода, так как при этом возможно систематическое использование полиномов наилучшего приближения в L_2 , по сравнению с решением дифференциальных уравнений гидростатического равновесия [9].

1. Экстремум энергии – условие равновесия конфигураций

Для произвольной вращающейся намагниченной конфигурации ее полная эергия имеет вид:

$$E = T + U + U_{in} + E_m. \tag{1}$$

В (1) $T = (1/2) \int \rho v^2 d^3 x$ - кинетическая енергия, ρ - плотность, $\vec{v} = [\vec{\omega} \times \vec{x}], \vec{\omega}$ - угловая скорость вращения конфигурации \vec{x} - радиус вектор.

Величину момента инерции конфигурации относительно оси вращения можно записать так:

$$J = \int \rho \vec{x}_{\perp}^2 d^3 x, \quad \vec{x}_{\perp}^2 = \vec{x}^2 - \frac{(\vec{\omega} \cdot \vec{x})^2}{\omega^2}.$$

Тогда $T = J\omega^2/2$, а момент импульса конфигурации $M = \omega J$. Соответственно $T = M^2/(2J)$, масса конфигурации $m = \int \rho d^3 x$, потенциальная энергия $U = (1/2) \int \rho \Phi d^3 x$, внутрення энергия $U_{in} = \int u\rho d^3 x$ (*u* - внутренняя энергия на единицу массы).

Для политропы индекса $n: u = nK\rho^{1/n}$ и $U_{in} = nK\int \rho^{1+1/n}d^3x = n\int Pd^3x$ (Р-давление).

Из данного соотношения следует, что при $\rho = \rho_0 = const$, $U_{in} = 0$ формула длшя магниной энергии имеет стандартный вид: $E_m = 1/(8\pi) \int B_{in}^2 d^3x$.

Из условия экстремума Е следует равенство нулю лагранжевой вариации Е:

$$\delta E = 0. \tag{2}$$

Покажем, что (2) эквивалентно уравнению гидростатического равновесия при условии постоянства массы $m = m_0$ и момента импульса $M = M_0$. Доказательство будем проводить следуя [3], где оно приводится лишь при M = 0, $B_{in} = 0$.

Существенным моментом нашего доказательства является использование операторного соотношения между лагранжевой △ и эйлеровой б вариациями:

$$\Delta = \delta + \left(\vec{\xi} \cdot \vec{\nabla}\right),\tag{3}$$

где $\vec{\xi} = \vec{\xi} (\vec{x}, t)$ - лагранжево смещение.

Рассмотрим интеграл:

$$I = \int_{V} Q(\vec{x}, t) d^{3}x.$$
(4)

В [3] показано:

$$\delta I = \int_{V} (\Delta Q + Q(\vec{\nabla} \cdot \vec{\xi})) d^{3}x.$$
(5)

Из $\delta m = 0$ и (5) имеем:

$$\Delta \rho = -\rho(\vec{\nabla} \cdot \vec{\xi}) \tag{6}$$

И

$$\delta \int_{V} Q\rho d^{3}x = \int_{V} \Delta Q\rho d^{3}x. \tag{7}$$

Из (7) и постоянства $M = M_0$ с учетом (3) находим:

$$\delta T = -\frac{M_0^2}{2J^2} \delta J = -\frac{M_0^2}{2J^2} \int \left(\rho \overrightarrow{\nabla} \cdot \overrightarrow{x}_\perp^2\right) \overrightarrow{\xi} d^3 x. \tag{8}$$

Для δU и δU_{in} получается точно такой же результат, что и в [3]:

$$\delta U = \int \left(\rho \vec{\nabla} \Phi\right) \vec{\xi} d^3 x; \quad \delta U_{in} = \int \left(\vec{\nabla} P \cdot \vec{\xi}\right) d^3 x. \tag{9}$$

Эйлерова вариация магнитной энергии с использованием (7) дает:

$$\delta E_m = 1/(8\pi) \int \rho \bigtriangleup \left(\frac{B_{in}^2}{\rho}\right) d^3x \tag{10}$$

Из (3) получаем:

$$\Delta\left(\frac{B_{in}^2}{\rho}\right) = \delta\left(\frac{B_{in}^2}{\rho}\right) + \left(\overrightarrow{\nabla}\frac{B_{in}^2}{\rho}\right) \cdot \overrightarrow{\xi}.$$
 (11)

Ради простоты рассмотрим только те намагниченные конфигурации, у которых первый член в (11) мал по сравнению со вторым. Тогда:

$$\delta E_m \approx 1/(8\pi) \int \rho \vec{\nabla} \left(\frac{B_{in}^2}{\rho}\right) \cdot \vec{\xi} d^3 x.$$
 (12)

Как будет видно из дальнейшего, только выполнение (12) согласуется с условием гидростатического равновесия намагниченной конфигурации.

Подставляя (8), (9), (12) в (2), находим:

$$\int \left[\overrightarrow{\nabla} \left(\Phi - \frac{M_0^2}{2J} \overrightarrow{x}_{\perp}^2 + \frac{1}{8\pi} \frac{B_{in}^2}{\rho} \right) + \overrightarrow{\nabla} P \right] \cdot \overrightarrow{\xi} d^3 x = 0.$$
(13)

Из (13) следует уравнение гидростатического равновесия равновесно вращающейся намагниченной конфигурации:

$$\vec{\nabla}P + \rho\vec{\nabla}\left(\Phi - \frac{\omega^2}{2}\vec{x}_{\perp}^2 + \frac{1}{8\pi}\frac{B_{in}^2}{\rho}\right) = 0.$$
(14)

В (14) мы учли $M_0^2/(2J) = \omega^2$. В случае $P = P(\rho)$ из (14) имеем интеграл этого уравнения:

$$\Phi + \int_{0}^{\rho} \frac{dP(\rho')}{\rho'} - \frac{\omega^2}{2} \overrightarrow{x}_{\perp}^2 + \frac{1}{8\pi} \frac{B_{in}^2}{\rho} = const.$$
(15)

Заключение

В результате нами доказана эквивалентность принципа экстремума полной энергии *E* равновесно вращающейся намагниченной конфигурации при постоянстве массы и момента импульса и интегрального уравнения (15).

Список литературы

- [1] Чандрасекар С. Эллипсоидальные фигуры равновесия. М.: Мир, 1982.
- [2] Тассуль Ж.Л. Теория вращающихся звезд. М.: Мир, 1982. 472 с.
- [3] С. Шапиро, С. Тюкольский. Черные дыры, белые карлики и нейтронные звезды. Ч. 1-2. М.: Мир, 1985.
- [4] Гилмор Р. Прикладная теория катастроф. Издательство: Мир, 1984.
- [5] Арнольд В.И. Теория катастроф. 3-е изд. доп. М.: Наука, 1990.
- [6] Цветков В.П., Масюков В.В. Метод рядов Бурмана-Лагранжа в задаче об аналитическом представлении ньютоновского потенциала возмущенных эллипсоидальных конфигураций. ДАН СССР, 1990. Том 313, №5. С. 1099-1102.
- [7] Беспалько Е.В., Михеев С.А., Пузынин И.В., Цветков В.П. Гравитирующая быстровращающаяся сверхплотная конфигурация с реалистическими уравнениями состояния. Мат. моделирование, 2006. Т. 118, №3. С. 103-119.
- [8] Беспалько Е.В., Михеев С.А., Цветков В.П., Цирулев А.Н., Пузынин И.В. Вычисление ньютоновского потенциала гравитирующей конфигурации с поверхностью, близкой к сфероиду, с помощью символьных и численных методов. Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика. 2008. № 1. С. 28-42.
- [9] James R.A. The structure and stability of rotating gas masses. The Astrophysical Journal. 1964. Vol. 140. P. 552.