<u>АНАЛИТИЧЕСКАЯ ХИМИЯ</u>

УДК 541.43

КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ АНТИБИОТИКОВ ПЕНИЦИЛЛИНОВОГО РЯДА

М.А. Феофанова, А.Г. Зехова, В.В. Новикова, И.С. Цветкова, Н.В. Баранова.

Тверской государственный университет Кафедра неорганической и аналитической химии

Предложена методика количественного определения антибиотиков ряда пенициллина — бицилина и амоксицилина на основе метода тонкослойной хроматографии, подобраны оптимальные условия для хроматографического разделения бицилина и амоксицилина.

Ключевые слова: антибиотики, пенициллин, тонкослойная хроматография.

С получением пенициллина как препарата (1949 г.) возникло новое направление в науке — учение об антибиотиках, которое необычайно быстро развивается в настоящее время. Из шести с лишним тысяч антибиотиков, известных к настоящему времени, лишь примерно сто находят применение в медицине. Большинство антибиотиков не находят применение в медицинской практике из-за их токсичности, инактивации в организме больного или других причин [1].

Антибиотические вещества - новые, ранее неизвестные по химическому строению соединения - представляют огромный интерес специалистов области химии природных соединений. Пенициллины широко применяются в научных исследованиях в качестве веществ, используемых при изучении образования клеточных стенок. Изучение путей образования антибиотиков способствует глубокому проникновению в механизмы синтетической деятельности продуцентов этих биологически активных соединений, раскрытию основных этапов их метаболизма. Наиболее широкое применение в практике находят антибиотики пенициллинового ряда, вследствие их широкого спектра действия, малой токсичности для организма, несложности получения и невысокой стоимости [2].

Препараты пенициллинового ряда изучены достаточно хорошо, однако в основном это касается аспектов химического синтеза, молекулярного механизма действия и физико-химических свойств пенициллинов. В то же время анализ научной литературы показал, что аналитическая химия растворов пенициллинов остается малоизученной, а имеющиеся экспериментальные данные противоречивы. Кроме того, в

связи с широким распространением антибиотиков пенициллинового ряда возрастает вероятность фальсификации лекарственных средств. В настоящее время разработаны многочисленные методы аналитических процессов, микробиологические методы (применяются главным образом в клинических лабораториях и для количественного контроля), различные физико-химические методы.

Наиболее успешными методами изучения антибиотиков являются хроматографические методы [3], которые благодаря своей простоте, быстроте и экономичности стали одними из наиболее распространенных аналитических методов, применяемых в фармации, токсикологии, биохимии. Поэтому целью работы явилось количественное определение антибиотиков ряда пенициллина — бицилина и амоксицилина методом тонкослойной хроматографии.

Методика. В качестве объектов исследования были выбраны антибиотики «Бицилин-3» (ОАО «Синтез», г. Курган) и «Амоксицилин» (Хемофарм А.Д. г. Вршац, Сербия), которые широко распространены в медицинской практике.

Выбранный метод тонкослойной хроматографии складывался из следующих последовательных операций:

- подготовка силуфола,
- подбор элюента,
- подготовка образца,
- нанесение образца,
- проведение хроматографического разделения,
- визуализация хроматограммы,
- обработка хроматограммы при помощи программы Хромоскан [4].

Подготовка силуфола. Для эксперимента использовались пластинки силуфол. Размер пластинок диктовался размерами имеющегося оборудования (хроматографических колонок).

Подбор элюента. В соответствии с литературными данными хорошие результаты разделения смеси пенициллинов получаются в системе этанол—вода—хлоруксусная кислота в соотношении 75:20:5. Но в результате эксперимента был подобран не менее эффективный растворитель бутанол—уксусная кислота—вода в соотношении 4:1:1, который дает те же результаты.

Подготовка образца. В работе использовались свежеприготовленные водные растворы указанных выше препаратов. Для построения калибровочных графиков эксперименты проводились с растворами различной концентрации. Готовился изначальный раствор антибиотика по навеске, высчитывалась концентрация, а затем разбавлялся в 2, 4, 6 и 8 раз соответственно.

Нанесение образца. Образцы наносятся на хроматограмму с помощью микрошприца. Диаметр стартового пятна не должен

превышать 5 мм. После нанесения исследуемого вещества полоску тщательно высушивают. В проведенных исследованиях высушивание проводилось на воздухе.

Хроматографирование. Процесс хроматографирования можно проводить в любом сосуде подходящих размеров, снабженном герметичной крышкой для исключения возможности испарения растворителя, которое ведет к нарушению хроматографирования. В работе в качестве хроматографических камер были использованы специальные цилиндры с плотно пригнанными крышками, к которым строго вертикально крепились полоски таким образом, чтобы хроматограмма не касалась стенок сосуда, а растворитель не достигал линии старта.

Визуализация хроматограмм. В литературе имеется много сведений о способах визуализации хроматографических зон антибиотиков. Среди них отмечено успешное использование паров йода. В данной работе в качестве проявителя использовался нингидрин и пары йода. Оба проявителя дают контрастные хроматографические пятна. Но преимущество отдали нингидрину. Перед проявлением хроматограммы необходимо высушить на воздухе. После хроматографирования пластинку помещали в печь и высушивали при температуре 100°C.

Резульматы и их обсуждение. Подвижность отдельных веществ характеризуется величиной Rf, представляющей собой отношение расстояния между центром пятна вещества и стартом к расстоянию между фронтом растворителя и стартом. Таким образом, вещества на старте имеют Rf = 0, а вещества на фронте растворителя – Rf = 1,0. Значения величин Rf, рассчитанные на основании экспериментальных данных с помощью программы Хромоскан.

Таблица 1. Значение Rf для антибиотиков

Антибиотик	Значение Rf
Бициллин	0,47
Амоксициллин	0,21

Из табл.1 видно, что Rf для указанных антибиотиков предложенная значительно различаются. В целом методика хроматографического разделения и визуализации хроматографических зон позволяет провести количественное определение бициллина и амоксициллина как при совместном присутствии, так и отдельно. Для подтверждения ЭТОГО был применен метод компьютерного денситометрирования полученных хроматограмм [4].

Этот метод заключается в предварительном оцифровывании тонкослойных хроматограмм при помощи планшетного сканера. Отсканированные изображения хроматограмм были сохранены в виде

Вестник ТвГУ. Серия "Химия" 2012. Выпуск 13.

файлов формата JPG и обработаны при помощи специальной компьютерной программы «Хромоскан».

Для того чтобы провести количественное определение исследуемых антибиотиков, мы решили воспользоваться методом калибровочного графика. Для его построения мы зафиксировали объем наносимой пробы в размере 2 мкл, а концентрацию изменяли в 2, 4, 6, 8 раз меньше начальной (см. рис. 1 и 2). В результате этих экспериментов были получены калибровочные графики.

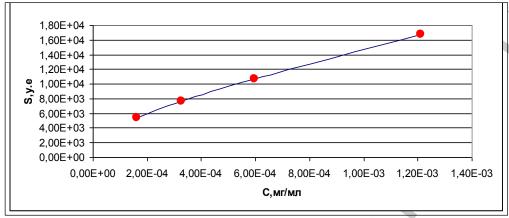


Рис. 1. Калибровочный график для амоксицилина

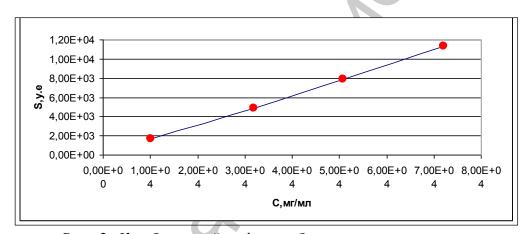


Рис. 2. Калибровочный график для бициллина

Как следует из графиков 1 и 2, экспериментальные точки хорошо ложатся на прямой, выходящей из начала координат. Линейность калибровочных графиков была подтверждена методами математической статистики.

В дальнейшем эти калибровочные графики были использованы для количественного определения антибиотиков в готовых лекарственных формах. Результаты этих измерений представлены в табл. 2.

Таблица 2 Значения количественного определения антибиотиков в готовых лекарственных формах

Антибиотик	Навеска, г	Результат, г	$X_{\mathrm{cp,}}$ Γ	ΔΧ, Γ
		0,043		
Бициллин	0,046	0,045	0,045	0,001
		0,048		
		0,035		
Амоксициллин	0,037	0,036	0,036	0,001
		0,038		

Из табл. 2 следует, что взятые и найденные количества антибиотиков находятся в соответствии. Таким образом, можно считать, что предложенная методика количественного определения взятых антибиотиков обеспечивает надежные результаты.

Данный метод количественного определения антибиотиков был апробирован на модельной биологической системе, содержащей простейшую аминокислоту – глицин и биометалл Ca^{2+} .

Таблица 3
Результаты количественного определения антибиотиков в модельной биологической системе

Антибиотик	Навеска, г	Результат, г	Х _{ср,} г	ΔХ, г
Γ	0.026	0,033	0.025	0.001
Бициллин	0,036	0,035 0,038	0,035	0,001
		0,045		
Амоксициллин	0,047	0,043	0,046	0,001
		0,048	,	,

Проведенный литературный анализ результаты И исследовательской работы по разделению количественному И определению антибиотиков группы пенициллина методом тонкослойной хроматографии позволяют сделать следующие выводы:

- 1. Подобраны оптимальные условия для хроматографического разделения бициллина и амоксициллина.
- 2. Подобрана методика количественного определения пенициллинов (бициллина и амоксициллина) методом тонкослойной хроматографии.

- 3. Показана высокая надежность данной методики для определения бициллина и амоксициллина в готовых лекарственных формах.
- 4. Предложенная методика апробирована на модельной биологической системе.

Список литературы

- 1. Егоров Н.С. Основы учения об антибиотиках М.: Высшая школа, 1964. 448 с
- 2. Шемякин М. М., Колосов А. С., Хохлов М. Н. Химия антибиотиков: в 2 т. М.: изд-во АН СССР, 1961. т. 1. 568 с.
- 3. Гранжан А. В., Чарыков А. К. Применение ионоселективных электродов в фармацевтическом анализе (обзор) // Химико-фармацевтический журнал. 1993. Т. 28, № 7. С. 51 56.
- 4. Рясенский С.С. Компьютерная сканирующая денситометрия. // Вестник ТвГУ. Сер. «Химия». 2006. № 8 (25). С. 116–120.

QUANTITATIVE DETERMINATION OF ANTIBIOTICS PENICILLIN RANGE

M.A. Feofanova, A.G. Zehova, V.V. Novikova, I.S. Tsvetkova, N.V. Baranova

Tver State University
Chair of inorganic and analytical chemistry

The technique of quantitative determination of some antibiotics penicillin - bitsilina and amoxicillin on the basis of TLC, Optimal conditions for chromatographic separation bitsilina and amoxicillin.

Keywords: antibiotics, penicillin, biochemical control.

Сведения об авторах:

ФЕОФАНОВА Мариана Александровна - доцент, канд. хим. наук, зав. каф. неорганической и аналитической химии, ТвГУ, e-mail: m000371@tversu.ru.

ЗЕХОВА Анна Геннадьевна - студентка 1 курса магистратуры, химикотехнологический ф-т, ТвГУ.

НОВИКОВА Виктория Владимировна - студентка 3 курса, химикотехнологический ф-т, ТвГУ.

ЦВЕТКОВА Иллона Сергеевна - студентка 3 курса, химико-технологический ϕ -т, ТвГУ.

БАРАНОВА Надежда Владимировна - канд. хим. наук, доцент, каф. неорганической и аналитической химии, ТвГУ, e-mail: nbaranova78@mail.ru.