

УДК 616.441.008.64+612.8.015

ЭФФЕКТЫ ВОЗДЕЙСТВИЯ ТИРОКСИНА НА МЕТАБОЛИЗМ ГАМК В СТРУКТУРАХ ГОЛОВНОГО МОЗГА КРЫС В РАННЕМ ПОСТНАТАЛЬНОМ ОНТОГЕНЕЗЕ

А.М. Оруджева

Институт физиологии им. А.И. Караева НАН Азербайджана, Баку

Установлено, что тироксин, введенный в организм крыс 21-дневных (в/б) (ежедневно, в течение 5 дней) в относительно высокой дозе (100 мкг/кг веса тела), достоверно снижал концентрацию глутаминовой кислоты (ГК) в ткани коры мозга и гипоталамуса и одновременно повышал содержание гамма-аминомасляной кислоты (ГАМК) в этих же структурах. Тироксиновые эффекты воздействия на активность основных ферментов ГАМК шунта – глутаматдекарбоксилазы (ГДК) и ГАМК-трансаминазы (ГАМК-Т) также были противоположны: в коре мозге и гипоталамусе тироксин способствовал повышению ГДК, и снижению ГАМК-Т активности. Тироксин в указанной дозе стимулирует образования ГАМК из ГК и задерживает распад ГАМК с последующим ее превращением в ГК.

Ключевые слова: тироксин, гамма — аминомасляная кислота (ΓAMK), глутаматдекарбоксилаза, ΓAMK - аминотрансфераза, глутаминовая кислота.

Введение. Тироксин (Т4), основной гормон щитовидной железы, играет важнейшую роль в регуляции обмена веществ и энергии, роста и развития организма человека и животных. Тироксин, прежде всего, влияет на интенсивность обмена и энергии в жизненно важных органах и тканях, он необходим для нормального развития и функционирования ЦНС, а его дефицит у новорожденных задерживает структурную и функциональную дифференцировку в головном мозге [6].

Установлено, что содержание свободно циркулирующего в крови тироксина резко повышается в начале постнатального онтогенеза и в пубертатном периоде [5; 8]. Выявлена высокая корреляция показателей секреции тироксина и обеспеченности ими тканей в разные периоды роста и развития организма. Введенный в организм животного меченный по йоду тироксин накапливается в наибольших количествах преимущественно в гипоталамусе и коре мозга [1]. Не только сам гормон тироксин, но и продукты его распада оказывают эффективное воздействие на регуляцию окислительно-восстановительных процессов на митохондриальном уровне клеток и координацию ряда синтезов в отдельных метаболических компартментах ткани мозга [9].

Для нейрохимии и нейрофизиологии важной задачей является изучение специфических влияний тироксина на активность ферментов в тканях мозга и на метаболизм ряда нейроспецефических веществ. Согласно существующим представлениям в процессах формирования и функционирования на нейрональном уровне фондов метаболизирующихся аминокислот и нейромедиаторов аминокислотной природы играют важную роль. Такие фонды содержат высокие концентрации полифункциональной глутаминовой, аспарагиновой и гамма-аминомасляной кислот (ГК, АсК и ГАМК), которые в синапсах центральных нейронов способны проявить также нейромедиаторные функции возбудительного и тормозного характера, а нервных клеток обильно снабжены специфическими молекулярными рецепторами, способными реагировать на воздействия различных гормонов и нейромедиаторов [2; 9; 11]. Высокую каталитическую ферменты аминотрансферазной активность тонкивкоди декарбоксилазной спецификой действия в мозге и благодаря их высокой активности в клетках мозга быстро совершаются процессы обмена аминокислот, в том числе ГК и ГАМК, на что эффективно влияют ферменты глутамат екарбоксилаза (ГДК) и ГАМК-трансаминаза $(\Gamma AMK-T)$ [3; 11].

Из сказанных следует, что изучение эффектов воздействия тироксина на отдельные метаболические звенья мозга является одним из важных вопросов нейрохимии, нейрофизиологии сегодня. Поэтому, в данном исследовании мы изучили эффекты воздействия относительно высоких доз тироксина на содержание и активность компонентов ГАМК-метаболического шунта в отдельных структурах головного мозга на раннем этапе постнатального развития организма.

Материал и методика. Опыты проводили на 21-дневных крысятах, содержавшихся на обычном пищевом режиме в условиях вивария. После внутрибрюшинного введения им тироксина в дозе 100 мкг/кг веса тела в течение 5-ти дней ежедневно, животных контрольной и опытной групп декапитировали, извлекали мозг на холоде, брали ткани коры мозга и гипоталамуса. В супернатантах гомогенатов тканей методом электрофореза на бумаге из смеси аминокислот, выделяли глутаминовую и гамма-аминомоляную кислоты (ГК и ГАМК). Для их выделения применяли буферную смесь вода – уксусная кислота — пиридин (44:8:1) при рН 3,5. Напряжение в электрофоретическом устройстве было 350 В, сила тока — 12,5 мА, продолжительность фореза — 4 ч. Количество ГК и ГАМК в окрашенных образцах определяли на спектрофотометре [10; 11].

Активность ферментов ГДК и ГАМК-Т устанавливали согласно соответствующим методикам [4; 12]. Об активности ГДК судили по количеству образовавшейся ГАМК в инкубационной среде с добавлением ГК. Инкубация тканевой среды продолжалась в течение

30 мин при 34^{0} С в атмосфере азота. Активность фермента выражали в микромолях ГАМК/1 г свежей ткани/ч. Активность ГАМК-Т определяли при инкубации среды в тех же условиях, но с добавлением ГАМК и выражали в микромолях ГК/1 г свежей ткани/ч. Количество образовавшейся ГК и ГАМК определяли также спектрофотометрическим способом. Полученные цифровые данные были обработаны статистически при помощи компьютерной программы Statistica for Windows.

Результаты и обсуждение. Определение содержания ГК и ГАМК в тканях коры мозга и гипоталамуса 21-дневных крысят, которым хронически (в течение 5-ти дней, ежедневно) был инъецирован (в/б) тироксин в дозе 100 мкг на кг веса тела показало, что он обладает выраженным специфическим эффектом в отношении метаболизма этих полифункциональных аминокислот, нейрональные фонды которых имеют особое значения для функционирования мозга. По нашим данным и по данным других авторов [2; 3; 11], в мозге незрелых животных, нормально развивающихся, обнаруживаются достаточно высокие концентрации ГК и ГАМК, что во многом обусловлено интенсивностью их обмена на ранних этапах постнатального онтогенеза. Тироксин оказывающий в том или другом возрасте сильного анаболического воздействия на уровне биохимической организации клеток, так или иначе, мог инициировать ряд эффектов в ГАМК-метаболических шунтах нервных клеток мозга. В табл. 1 представлены данные об изменениях количественных показателей ГК и ГАМК в ткани коры мозга и гипоталамуса 21-дневных крысят после введения им относительно большой дозы тироксина.

Таблица 1 Изменение содержания ГК и ГАМК в ткани коры мозга и гипоталамуса 3-х недельных крысят после двух часов 5-ти дневного введения (в/б) тироксина в дозе 100 мкг/кг веса тела (М±m, N=6–8)

Показатели	Группа	Структуры мозга	
		кора	гипоталамус
ГК, мкмоль/г	контроль	4,90±0,14	5,22±0,15
	опыт	2,65±0,21*	2,92±0,17*
		(54%)	(56%)
ГАМК, мкмоль/г	контроль	2,42±0,10	2,62±0,12
	опыт	4,43±0,17*	4,56±0,17*
		(183%)	(174%)

Примечание. * – достоверность различий между данными контроля и опыта (p<0,001).

У интактных животных концентрация ГК в исследованных структурах – в коре и гипоталамусе мозга довольно высока и составляет 4,90 и 5,22 мкмоль/г свежей ткани, соответственно. После

многократного введения тироксина эти величины существенно снизились на 46 и 44% по отношению к норме. Содержание ГАМК в этих же структурах в норме значительно ниже, чем содержание ГК, а после введения тироксина оно резко возрастает в обеих изученных нами структурах мозга. В коре ГАМК увеличивалась на 83% (p<0,001), а в гипоталамусе на 74% (p<0,001). Таким образом, тироксин в избыточный дозе вызывает достаточно выраженные изменения количественных показателей ГК и ГАМК в структурах головного мозга развивающегося животного организма.

Из литературы известно, что специфические эффекты тироксина на аминокислотный обмен связаны с его стимулирующим действием на транспорт аминокислот через клеточные мембраны. Такое воздействие гормона может осуществляться на уровне цитоплазматической и митохондриальной мембраны клетки. ГК относится к тем аминокислотам, концентрация которых очень высокая в любой структуре мозга. Она является центральным звеном многих биохимических путей, сопряженных с аминокислотным метаболизмом, служит главным коллектором и донором аминогрупп для реакций аминирования и переаминирования. Известна как глюкогенная и нейромедиаторная аминокислота, и ГАМК синтезируется в цитоплазматических метаболических компартментах нейронах непосредственно из ГК. Следовательно, тироксин может оказывать свое воздействие на обмен ГК на любом из перечисленных звеньев нейронального метаболизма. Снижение концентрации ГК и повышение концентрации ГАМК в структурах мозга под влиянием тироксина можно рассматривать как следствие его полифункционального мозга и его клеточных элементов. Особое значение тироксина заключается в его воздействии на активность ряда ферментов аминокислотного обмена.

Таблица 2 Изменение общей активности ферментов ГДК и ГАМК-Т в ткани коры мозга и гипоталамуса 3-х недельных крысят после двух часов 5-ти дневного введения (в/б) тироксина в дозе 100 мкг/кг веса тела (М±m, N=8–10)

Показатели	Группа	Структуры мозга	
активности		кора	гипоталамус
ГДК,	контроль	58,47±4,20	$74,85\pm2,33$
мкмоль/г/1 ч	опыт	94,14±6,22*	116,02±5,10**
инкубации		(161%)	(155%)
ГАМК-Т,	контроль	78,79±3,95	84,63±5,94
мкмоль/г/1 ч	опыт	39,4±2,91**	51,6±3,26*
инкубации		(50%)	(61%)

Примечание. Достоверность различий между данными контроля и опыта: * - p<0,01, ** - p<0,001.

В данном исследовании мы определили также активность двух ключевых ферментов обмена ГК и ГАМК – ГДК-азы и ГАМК-

трансаминазы в ткани коры мозга и гипоталамуса 21-дневных крысят до и после введения тироксина в той дозе, которую применяли в предыдущей серии опытов (табл. 2). Общая активность фермента глутаматдекарбоксилазы (ГДК), которая катализирует реакцию превращения ГК в ГАМК, в ткани коры мозга и гипоталамуса контрольных животных составляет, соответственно, 58, 47 и 74, 85 мкмоль ГАМК/г ткани/ч инкубации. Активность ГАМК-трансаминазы (ГАМК-Т), которая катализирует реакцию распада ГАМК и обратного образования ГК, выражена в значениях, соответственно, 78, 79 и 84,5, 94 мкмоль ГК/г ткани/ч инкубации. Таким образом, у крысят в норме величины активности ГДК и ГАМК-Т различны и зависимы от их структурной принадлежности. Сходные данные получены другими авторами [7; 9; 11].

Результаты эксперимента показали, что нормативные значения активности ГДК и ГАМК-Т в структурах мозга крысят резко изменяются после введения тироксина. Так, в коре мозга животных опытной группы активность ГДК возрастает на 61% (p<0,01), а в гипоталамусе – на 55% (p<0,001). Что касается ГАМК-трансаминазной активности, то она снижается в коре мозга на 50% (p<0,001), в гипоталамусе – на 39% (p<0,01). Из полученных данных видно, что тироксиновое воздействие на активность ГДК и ГАМК-Т и возможно, на ферментативные процессы в ГАМК-шунте, оказалось более выраженным и характерным, чем на содержание количества ГК и ГАМК.

Изменение активности фермента ГК ГАМК-Т под влиянием тироксина скорее всего связано с непосредственным его действием на процессы их биосинтеза и фермент-субстратные взаимодействия [2; 5; 9], и возможно это действие тироксина осуществляется через стимулирование системы цАМФ нервных клеток, которое оказывает сильное влияние на внутринейрональный метаболизм в целом, и на обмен нейромедиаторных веществ, в частности.

1. Список литературы

- 1. Дейвис П.Д., Дейвис Ф.Б. Негеномные эффекты тиреоидных гормонов. М.: Медицина, 2000. 280 с.
- 2. *Иноятова Ф.Х.*, *Тонких А.К.*, *Якубова Д.Т.* ГАМК-рецепторные системы при дисфункции щитовидной железы // Проблемы эндокринологии. 2009. Т. 55, № 5. С. 28–30.
- 3. *Курбат М.Н., Лелевич В.В.* Обмен аминокислот в головном мозге // Нейрохимия. 2009. Т. 26, № 1. С. 29–34.
- 4. *Нилова Н.С.* Аммиак и ГАМК-трансаминазная активность ткани головного мозга // Докл. АН СССР. 1966. № 2. С. 483–486.
- 5. Семененя И.Н. Функциональное значение щитовидной железы //

- Успехи физиологических наук. 2004. Т. 35. С. 41-50.
- 6. *Фурдуй Ф*. Регуляция функций щитовидной железы и механизмы возникновения неврогенного тиреотоксикоза. Кишинев, 1967. 150 с.
- 7. *Ширинова Ф.А.* Система гамма-аминомасляной кислоты (ГАМК) в структурах мозга при изменения функции щитовидной железы и воздействии паров бензола: автореф. дис.... канд. биол. наук. Баку, 1984. 22 с.
- 8. Щитовидная железа. Фундаментальные аспекты / под ред. А.И. Кубарко, S. Yamashita. Минск; Нагасаки, 1998, 338 с.
- 9. *Bernal I.*, *Nunez I.* Thyroid hormones and brain development // Eur. J. Endocrinol. 1995. Vol. 133, № 4. P. 390–398.
- 10. *Doze K*. Die anvendungder Hochspanmumgspherographie bei der guantitativen totalanojyse von Protein hydrolysaten // Mittelling Biochem. Z. 1957. B. 329, № 2. S. 416–419.
- 11. *Robert S., Frankel S.* Gamma-aminobutyric acid in brain? Its tormation from glumamic acid // J. Biol. Chem. 1950. № 187. P. 55–61.
- 12. Sytinsky I.A., Priyatkina T.N. Effects of certain drugs on gamma-aminobutyric acid system of central nervous system // Biochem. Pharmacol. 1966. Vol. 115, № 4. P. 49–54.

THE INFLUENCE OF THYROXIN ON GABA METABOLISM IN SOME BRAIN STRUCTURES OF RATS IN POSTNATAL DEVELOPMENT

A.M. Orudjeva

Garayev Institute of Physiology of Azerbaijan NAS, Baku

It has been revealed that thyroxin injected to 21 days rats daily for 5 days in relatively a high dose (100 mg/kg of body weight) decreased reliably the glutamine acid (GA) level in the tissues of the brain cortex and hypothalamus and at the same time increased gamma-aminobutyric acid (GABA) in these structures. Thyroxin effects on the main enzymes of GABA-glutamate decarboxylase shunt (GDC) and GABA transaminase (GABA-T) were contrary as well in the brain cortex and hypothalamus. Thyroxin promotes increasing of GDC-activity and decreasing of GABA-T activity. It is drawn a conclusion that thyroxin in the indicated dose stimulates GABA formation out of GA and delays the GABA disintegration and following its transformation into GA.

Keywords: thyroxine, gamma-aminobuturic acid (GABA), glutamatdecarboxylasr, GABA- aminotransferase, glutanine acid.

Об авторах:

ОРУДЖЕВА Асмер Мамед кызы–аспирант Института физиологии им. А.И. Караева НАН Азербайджана, AZ 1100, Азербайджан, Баку, ул. Шариф-заде, 2, e-mail: asmeroruc@yahoo.com