УДК 612.43

ВЗАИМОСВЯЗЬ УРОВНЯ ТРОПНЫХ ГОРМОНОВ И СТЕРОИДОВ С ВЕГЕТАТИВНЫМ СТАТУСОМ ОРГАНИЗМА У МУЖЧИН И ЖЕНЩИН

Л.Н. Смелышева, А.П. Кузнецов, М.А. Котенко, А.А. Котенко

Курганский государственный университет

У 29 клинически здоровых мужчин и 31 женщины активного репродуктивного периода с учетом от исходного вегетативного статуса был определен гормональный фон, зависящий от некоторых исследуемых параметров. Выявлены гендерные особенности уровней тропных гормонов и стероидов при различном типе АНС.

Ключевые слова: автономная нервная система, гормоны гипофиза, надпочечников и гонад.

Введение. Нейрогуморальная регуляция является ключевым звеном, характеризующим индивидуальные особенности организма, степень устойчивости к возмущающим факторам и его компенсаторные возможности [6; 7; 9; 11]. Современные представления об участии в регуляции центральной нервной механизмах системы, внутренней секреции, либеринов и статинов гипоталамуса, через которые опосредуется действие на эффекторные клетки и органы многих гормонов изучено в настоящее время достаточно полно [4; 10; 12]. которые ставят перед собой Исследователи, задачу механизмов регуляции, сталкиваются с методической трудностью по разделению единого нейрогуморального контура на нервные и гуморально-гормональные каналы. Однако интерес к типологическим реакциям регуляторного характера существует и сегодня. Связь уровня тропных гормонов и исходного типа автономной нервной системы с гендерными особенностями организма остается актуальным вопросом физиологии.

Материал и методика. В исследовании приняли участие 29 клинически здоровых мужчин в возрасте от 18 до 23 лет и 31 женщина активного репродуктивного периода, относящиеся к основной группе здоровья. Использование математического анализа вариабельности сердечного ритма для изучения функционального состояния организма все чаще встречается в современных исследованиях [1; 3; 5]. Для выявления индивидуальных различий гормонального статуса по показателям математического анализа вариабельности сердечного ритма (ВСР) у всех обследуемых мужчин и женщин был определен исходный вегетативный тонус организма (ваго-, нормо-, симпатикотония) [2]. Определялся ряд показателей, позволяющий в

совокупности дать качественную оценку вегетативного баланса: амплитуда моды кардиоинтервалов (АМо,%), стандартное отклонение кардиоинтервалов (SDNN,c), вариационный размах (MxDMn), индекс напряжения (ИН, усл. ед). В качестве индикатора вегетативного баланса выбран индекс напряжения регуляторных систем [8], который у ваготоников не превышал 30 усл. ед, при нормотонии составлял от 31 до 120 усл. ед. и при симпатотонии от 120 усл. ед. Полученные данные обрабатывали методом вариационного, корреляционного Статистическую обработку проводили методом Стьюдента-Фишера. Различия между сравниваемыми величинами считали достоверными при вероятности не менее 95% (р<0,05). Для выявления тесноты и взаимосвязи между исследуемыми направленности показателями определяли коэффициент корреляции (r). определения гормонального фона в условиях эмоциональной стабильности в утренние часы натощак осуществляли забор крови и определяли концентрацию адренокортикотропного гормона (АКТГ), кортизола, альдостерона, лютеинизирующего гормона фолликуло- $(\Pi\Gamma)$, стимулирующего гормона (ФСГ), эстрадиола, прогестерона. Применен метод иммуноферментного анализа, с промышленными наборами фирм «BIOMERICA» США, «DRG» Германия, «Алкор-Био», Установлены типологические и межполовые различия показателей.

Результаты и обсуждение. В результате исследования была выявлена зависимость показателей гормонального статуса от половой принадлежности индивида, а также зависимость от типа АНС. Анализируя полученные данные необходимо отметить гендерные отличия уровня тропных гормонов. Во всех группах исследуемых мужчин показатели кортизола и АКТГ значительно превышают соответствующие показатели в группах женщин, что соответствует большей активности в организме компенсаторных процессов, энергетических ресурсов организма, сохранении усилении катаболических процессов, обеспечении развития резистентности организма и расширении границ адаптационных возможностей, способствуя защите организма при стрессе (табл. 1). При этом в группе ваготоников отмечается достоверность превалирующих показателей по обоим гормонам. У симпатотоников эти данные достоверны только в отношении кортизола, а в группе нормотоников только в отношении АКТГ. В мужской и женской группе ваготоников, а также у мужчин нормо- и симпатотоников показатели кортизола превышают верхнюю границу нормы (т. е > 635 нмоль/л), что является риском ожирения, сахарного диабета типа 2, ГБ и сердечно-сосудистых заболеваний, так как под действием кортизола происходит расщепление жиров, переработка белков и повышение уровня холестерина и глюкозы крови, что приводит к ряду патологических процессов. Изменения показателей кортизола в зависимости от вегетативного статуса имеет следующую

направленность: в группе мужчин и женщин: В>С>Н. В женской группе нормотоников показатели кортизола достоверно ниже относительно уровня кортизола у женщин ваготоников. У женщин-симпатотоников уровень кортизола ниже относительно ваготоников и превышает значения при нормотонии, эти данные достоверны. Уровень АКТГ превышает верхнюю границу нормы только в группе ваготоников мужчин (т. е > 80 пг/мл). Таким образом, компенсаторные эффекты кортизола нивелируются при доминировании парасимпатического тонуса и мужской доминанты. Показатели альдостерона в мужской группе ваготоников, превышают значения женской группы (p<0,05), а в группе нормотоников максимальные значения данного гормона наблюдаются среди женщин (p<0,05), причем не только по отношению к мужчинам, но и к остальным женским группам. Не существует межполовых различий при доминировании симпатикотонии. Интерес также представляла гонадотропная функция гипофиза и ее связь с исходным тонусом АНС и половыми особенностями. гонадотропинов различен в группах обследованных женщин (р<0,05). Обнаружена связь максимальной концентрации ФСГ и ЛГ с эйтонией, минимальные значения ФСГ с ваготонией, а ЛГ с симпатикотонией. Различны межгрупповые значения эстрадиола и прогестерона, так, концентрация первого снижалась в ряду В-Н-С, причем достоверно в крайних группах, а прогестерон сохранял закономерность в виде существует тенденции. Таким образом, зависимость уровня висцеротонии и гонадотропинов, а также оси гипофиз-гонады.

Адренокортикотропный гормон $(AKT\Gamma)$ вырабатываемый передней долей гипофиза, стимулирует функцию коры надпочечников (выработку кортикостероидов, в частности кортизола, а также альдостерона) и тем способствует нормальному течению процессов обмена веществ и повышению сопротивляемости организма человека влиянию неблагоприятных условий. В нашем исследовании модуляция связи гипофиз-кора надпочечников варьировалась в зависимости от вегетативного статуса обследованных. Взаимосвязь гонадотропной и АКТГ – функции гипофиза различна в обследованных группах. Максимально гонадотропная функция ассоциирована с нормотонусом, при этом АКТ – функция в этой группе достаточно оптимизирована. Напряженность регуляторных механизмов ассоциирована парасимпатическим тонусом AHC. Можно «перераспределение» АКТГ- и гонадотропной функций гипофиза у женщин - ваготоников в пользу первой, когда стероидный гомеостаз в этом случае смещен в сторону кортикоидной активности, что является неблагоприятным моментом функционирования женского организма.

Таблица 1 Показатели гормонов аденогипофиза, надпочечников и гонад у мужчин и женщин в зависимости от исходного тонуса АНС $(M\pm m)$ (n=60)

Показатели	Ваготоники (В)		Нормото	ники (Н)	Симпатотоники (С)	
	муж.	жен.	муж.	жен.	муж.	жен.
АКТГ, пг/мл	186,3±56,9*	45,99±28,2	41,1±2,64*	22,6±5,47	33,8±3,54	28,01±8,39
Кортизол, нмоль/л	1063,3±63,1*	698,13±82,7	856,3±77,8*	366,7±46,7**	911,5±86,3*	522,6±47,1**^
Альдостерон, пг/мл	131,4±17,4*	51,7±10,3	142,6±27,7*	283,6±51**	232,8±65,5	149,3±26,4**^
ФСГ, мМЕ		4,54±0,13		8,05±1,3**		6,3±0,58**
ЛГ, мМЕ		10,7±1,24		16,2±3,4**		8,87±1,03^
Эстрадиол, пг/мл		14,6±0,15		13,5±1,05		12,28±0,82**
Прогестерон, нмоль/л		37,8±11,3		27,3±9,2		26,1±5,2

Примечание. * – достоверно относительно женщин, ** – относительно В ^ – достоверно относительно Н при p<0,05.

Для выявления тесноты и направленности взаимосвязи между уровнем гормонов и показателями, характеризующими вегетативный статус, определяли коэффициент корреляции Анализ (r). матрицы определить характер корреляционной позволяет направленность связей в исследуемых группах (табл. 2). Из результатов обследований видны значительные различия по характеру и корреляционных направленности образующихся связей мужчинами и женщинами. Сравнивая количество образованных корреляционных связей между группами отмечается сильных следующая направленность В>Н>С. В группе ваготоников-женщин образуется самое большое количество сильных разнонаправленных связей между уровнями гормонов и показателями вегетативного результате чего представители статуса, данной характеризуются меньшей устойчивостью к действию возмущающих факторов и более напряженной работой регуляторных контуров, при формировании функциональных систем. В группе ваготоников-мужчин количество сильных корреляционных взаимоотношений значительно меньше. Сравнивая мужскую и женскую группы ваготоников выявлена разнонаправленность образованных связей: корреляционные взаимодействия между кортизолом и ИН у мужчин в отличии от женщин имеет положительную направленность (r=0,9), между концентрацией АКТГ и дисперсией у мужчин (в отличии от женщин) наблюдается отрицательная корреляция (r=-0,7), а между АКТГ и ИНположительная (r=0,6).

Таблица 2 Корреляционные связи между исследуемыми гормонами и показателями вегетативного статуса (M±m) (n=60)

Поморожани	Ваготоники (В)		Нормотоники (Н)		Симпатотоники (С	
Показатели	муж.	жен.	муж.	муж.	жен.	муж.
Кортизол/ЧСС				0,6		
Кортизол/ср. знач.		0,6				
Кортизол/SDNN	0,9	0,9		0,8		
Кортизол/дисперсия	0,8	0,9		0,8		
Кортизол/Мо		0,6				
Кортизол/АМо		0,8		0,7		
Кортизол/ИН	0,9	-1				
Кортизол/МхDМп	0,9	0,9		0,8		
Кортизол/АКТГ		0,9			0,9	
AKTΓ/SDNN		0,9				
АКТГ/дисперсия	-0,7	0,9		0,6		
ΑΚΤΓ/ΑΜο		0,9				
АКТГ/ИН	0,6	-0,8)		
ΑΚΤΓ/MxDMπ	0,7	0,9			0,8	
ЛГ/ЧСС		-0,97				
ЛГ/SDNN		0,94				
ЛГ/ИН		-0,99				
ЛГ/МхDМп		0,78				
ФСГ/ЧСС		-0,84				
ΦCΓ/SDNN		0,9				
ФСГ/ИН		-0,95				
ΦCΓ/ΜxDΜπ		0,91				
Эстрадиол/Мо		0,98				0,6
Эстрадиол/ЧСС		-0,98				0,6
Прогестерон/АМо		0,73				

Примечание. Пустые ячейки соответствуют наличию средних и слабых корреляционных связей между показателями.

В группе нормотоников имеются существенные гендерные различия, характеризующиеся отсутствием образованных сильных связей у мужчин (имеются лишь слабые и средние связи), и наличием положительных сильных связей в женской группе между уровнем кортизола и некоторыми показателями вегетативного статуса (ЧСС, SDNN, дисперсия, АМо, МхDМп), а также между АКТГ и дисперсией.

У симпатотоников-мужчин наблюдается положительная корреляция (r=0,9) между концентрациями кортизола и АКТГ в сыворотке крови, а в женской группе между гормонами и показателями вегетативного статуса имеются лишь средние и слабые корреляционные связи.

Заключение. Статистический И корреляционный позволяет сделать некоторые выводы. Парасимпатический тонус АНС является в большей степени уязвимым, нежели компенсаторным. Гендерные характеристики кортизола превалируют у мужчин как по уровню перенапряжения, так и по запасу восстановительного компонента. Корреляционный анализ подтверждает механизмов регуляции при доминировании парасимпатического тонуса, при этом стероидный гомеостаз у женщин с данным вегетативным регулированием смещен в сторону АКТГ, а не гонадотропной функции.

Список литературы

- 1. Агаджанян Н.А., Батоцыренова Т.Е., Северин А.Е., Семенов Ю.Н., Сушкова Л.Т., Гомбоева Н.Г. Сравнительные особенности вариабельности сердечного ритма у студентов, проживающих в различных природно-климатических регионах // Физиология человека. 2007. Т. 33, № 6. С. 66–70.
- 2. Баевский Р.М., Кириллов О.И., Клецкин С.З. Математический анализ изменений сердечного ритма при стрессе. М.: Наука, 1984. 222 с.
- 3. *Ноздрачев А.Д.*, *Щербатых Ю.В.* Современные способы оценки функционального состояния автономной (вегетативной) нервной системы // Физиология человека. 2001. Т.27, № 6. С. 95–101.
- 4. *Овсянников В.И.* Нейромедиаторы и гормоны в желудочнокишечном тракте (интегративные аспекты). СПб., 2003. 136 с.
- 5. *Смелышева Л.Н.* Секреторная функция желудка и поджелудочной железы при действии эмоционального стресса: дис. . . . д-ра мед. наук Тюмень, 2007. 300 с.
- 6. Судаков К.В. Основы физиологии функциональных систем. М., 1983. 232 с.
- 7. *Филаретов А.А.* Гипоталамо-гипофизарно-адренокортикальная система. Закономерности функционирования // Физиол. журн. СССР им. И. М. Сеченова. 1992. Т. 78, № 12. С. 50–57.
- 8. *Щербатых Ю.В.* Вегетативные проявления эмоционального стресса: дис. . . . д-ра биол. наук. Воронеж, 2001. 313 с.
- 9. Bobbert T., Brechtel L., Mai K., Otto B., Maser-Gluth C., Pfeiffer A.F.N., Spranger J., Diederich S. Adaptation of the hypothalamic-pituitary hormones during intensive endurance training // Clin. Endocrinol. 2005. Vol. 63, № 5. P. 530–536.
- 10. Caufriez A., Moreno-Reyes R., Leproult R., Vertongen F., Van Cauter E., Copinschi G. Immediate effects of an 8-h advance shift of the rest-

- activity cycle on 24-h profiles of cortisol // Amer. J. Phisiol. 2002. Vol. 282, № 5. P. 1147–1153.
- 11. *Mravec B., Bodnar I., Uhereczky G., Nage G.M., Kvetnansky R., Palkovits V.* Formalin attenuates the stress-induced in plasma epinephrine levels // J. Neuroendocrinol. 2005. Vol. 17, № 11. P. 727–732.
- 12. Rodriguez T.T., Albuquerque-Araujo W.I.C., Reis L.C., Antunes-Rodrigues J., Ramalho M.J. Hipothyroidizm attenuates stress-induced prolactine and corticosteron release in septic rats // Exp. Phisiol. 2003. Vol. 88, № 6. P. 755–760.

CORRELATION BETWEEN THE LEVEL OF TROPIC HORMONES, STEROIDS AND VEGETATIVE STATUS OF MEN AND WOMEN

L.N. Smelisheva, A.P. Kuznetsov, M.A. Kotenko, A.A. Kotenko

Kurgan State University

Hormonal background of 29 healthy men and 31 healthy women in active reproductive period was determined, depending on the source of vegetative status. Gender-specific levels of tropic hormones and steroids in different type of ANS were detected.

Keywords: vegetative nervous system, pituitary hormones, adrenal hormones, gonadal hormones.

Об авторах:

СМЕЛЬІШЕВА Лада Николаевна—доктор медицинских наук, профессор кафедры анатомии и физиологии человека, ГОУ ВПО «Курганский государственный университет», 640669, Курган, ул. Гоголя, д. 25, e-mail: Smelisheva@yandex.ru

КУЗНЕЦОВ Александр Павлович—доктор биологических наук, профессор, заведующий кафедрой анатомии и физиологии человека, ГОУ ВПО «Курганский государственный университет», 640669, Курган, ул. Гоголя, д. 25, e-mail: kuznecov@kgsu.ru

КОТЕНКО Мария Александровна—врач-гастроэнтеролог, аспирант кафедры анатомии и физиологии человека, ГОУ ВПО «Курганский государственный университет», 640669, Курган, ул. Гоголя, д. 25, e-mail: marcot83@yandex.ru

КОТЕНКО Антон Александрович–врач-уролог, аспирант кафедры анатомии и физиологии человека, ГОУ ВПО «Курганский государственный университет», 640669, Курган, ул. Гоголя, д. 25, e-mail: antonkotenko@rambler.ru