УДК 541.64:593.199

ФАЗОВОЕ ПОВЕДЕНИЕ ДИБЛОК- И ТРИБЛОК-СОПОЛИМЕРОВ С БЛОКАМИ РАЗНОЙ ЖЕСТКОСТИ

Н.В. Ильина, Т.Ю. Селина, А.С. Павлов

Тверской государственный университет Кафедра физической химии

Методом диссипативной динамики частиц проведено компьютерное моделирование процессов самоорганизации в тонких пленках диблоксополимеров и в расплаве триблок-сополимеров, содержащих блоки разной жесткости. В результате моделирования получены некоторые морфологии, включающие в себя ламеллярные, биконтинуальные, а также гексагональные и центрированные кубические структуры. Установлено, что морфология диблок- и триблок-сополимеров зависит от их композиционного состава, а также от характера «сегмент-сегментного» взаимодействия.

Ключевые слова: компьютерное моделирование, блок-сополимеры, микрофазное расслоение.

В настоящее время блочные сополимеры представляют большой интерес в силу своего чрезвычайно широкого применения [1]. Решаются задачи, направленные на создание устройств молекулярной микроэлектроники и нанотехнологии [2]. Однако интерес вызывают не только свойства И механические характеристики полимерных материалов, но и их фазовое поведение.

Блок-сополимеры обладают способностью к микрофазному образованием расслоению, которое сопровождается нано-И микрообластей. Тенденция к такому поведению полимерных систем вызвана действием энтропийного и энтальпийного факторов и зависит от следующих параметров: объемных долей индивидуальных блоков Ø_A $\phi_{\rm B}$ и $\phi_{\rm C}$, представляющих собой отношение числа мономерных звеньев к их общему числу в молекуле полимера, и произведения параметра Флори-Хаггинса χ на степень полимеризации N. В результате могут образовываться структуры с различной морфологией. Например, сферические и цилиндрические мицеллы, чередующиеся ламели и др. [3].

При реализации процесса моделирования морфологий диблок- и триблок-сополимеров одной из важнейших оказалась задача выбора расчетного метода. Поскольку процесс самоорганизации в полимерных системах охватывает большие временные масштабы, то оптимальным является использование мезоскопических методов моделирования, к которым относятся динамическая теория функционала плотности (ДТФП) и метод диссипативной динамики частиц (ДДЧ). В данной работе применялся метод ДДЧ. Указанный метод является модификацией метода молекулярной динамики (МД) с учетом гидродинамических взаимодействий и предназначен для моделирования полимерных систем на масштабах длин и временных масштабах, лежащих за пределами доступности обычных микроскопических методов.

Так же как и в молекулярной динамике, эволюция ДДЧ-частицы описывается системой уравнений движения. Масса всех частиц принимается за 1, поэтому сила, действующая на частицу, равна ее ускорению, а характерная единица времени определяется как $\sigma\sqrt{1/k_BT}$ (где k_B – постоянная Больцмана; Т – температура). Равнодействующая сила состоит из четырех групп попарно аддитивных слагаемых:

$$\mathbf{f}_{i} = \sum_{i \neq j} \mathbf{F}_{ij}^{'\text{Spr}} + \mathbf{F}_{ij}^{\text{C}} + \mathbf{F}_{ij}^{\text{R}} + \mathbf{F}_{ij}^{\text{D}} , \qquad (1)$$

где $\mathbf{F}_{ij}^{(Spr)}$, \mathbf{F}_{ij}^{C} , \mathbf{F}_{ij}^{R} и \mathbf{F}_{ij}^{D} – соответственно вклады внутрицепных, консервативных, случайных и диссипативных сил.

Суммирование ведется по всем частицам, находящимся внутри области, ограниченной радиусом обрезки взаимодействия $r_c = \sigma$. Штрих в $F_{ij}^{'Spr}$ означает, что при вычислении данной силы учитываются только частицы, входящие в состав одной цепи. При этом

$$\mathbf{F}_{ij}^{Spr} = C \left| r_{ij} - \sigma \right| \hat{r}_{ij} \quad . \tag{2}$$

Здесь С= $4k_{\rm B}T/\sigma$ – коэффициент жесткости.

В выражении (1) консервативные силы определяют химическую природу ДДЧ-частиц:

$$\boldsymbol{F}_{ij}^{(C)} = \begin{cases} a_{ij} (1 - r_{ij}/r_C) \hat{r}_{ij}, & r_{ij} < r_C \\ 0, & r_{ij} > r_C \end{cases}$$
(3)

где a_{ij} – амплитуда максимального отталкивания силовых центров *i* и *j*, $\mathbf{r}_{ii} = \mathbf{r}_i \cdot \mathbf{r}_i$, $\mathbf{r}_{ii} = |\mathbf{r}_{ii}|$.

Диссипативная сила определяется выражением

$$\mathbf{F}_{ij}^{\mathrm{D}} = \begin{cases} \gamma \omega^{\mathrm{D}}(\mathbf{r}_{ij}) \big(\mathbf{v}_{ij} \cdot \hat{\mathbf{r}}_{ij} \big) \hat{\mathbf{r}}_{ij}, & \mathbf{r}_{ij} < \mathbf{r}_{\mathrm{c}} \\ 0, & \mathbf{r}_{ij} \ge \mathbf{r}_{\mathrm{c}} \end{cases}, \tag{4}$$

где $\gamma = 4,5 \tau^{-1} - \kappa \dot{\phi} \phi$ ициент трения; $\omega^{D}(\dot{r}_{ij})$ – весовая функция, описывающая гидродинамическое трение и уменьшающая энергию частиц и, как следствие их скорости.

Случайная сила \mathbf{F}_{ij}^{R} характеризует уровень теплового шума в системе и взаимодействие частиц с тепловым резервуаром:

$$\mathbf{F}_{ij}^{R} = \begin{cases} \xi \omega^{R}(r_{ij})\theta_{ij}\hat{r}_{ij}, \ r_{ij} < r_{c} \\ 0, \qquad r_{ij} \ge r_{c} \end{cases}$$
(5)

где коэффициент ξ характеризует силу теплового шума; θ_{ij} – случайная величина с нормальным распределением, ее среднее значение равно нулю, а дисперсия – $\gamma k_B T / \tau$ (τ – время корреляции).

Как и диссипативная, случайная сила действует вдоль линии, соединяющей взаимодействующие частицы. Эта сила возвращает энергию в систему, компенсируя действие диссипативной силы, т.е. обеспечивает сохранение полного импульса и момента импульса системы [4].

Амплитуды **F**_{ij}^R и **F**_{ij}^D удовлетворяют флуктуационнодиссипативной теореме [5], что обеспечивает переход системы в хорошо выраженное равновесное состояние. Одна из весовых функций в уравнениях (4) и (5) может быть выбрана произвольно и тем самым определить выбор второй весовой функции [6]. Обычно весовые функции задаются следующим образом:

$$(\omega^{R}(r_{ij}))^{2} = \omega^{D}(r_{ij}) = \begin{cases} (r_{c} - r_{ij})^{2}, r_{ij} < r_{c}, \\ 0, & r_{ij} < r_{c}. \end{cases}$$
(6)

Функция $\omega^{R}(r_{ij})$ определяет направление действия силы между частицами. Также существует взаимосвязь между константами γ и ξ , $\xi^{2} = 2 \gamma k_{B}T$, обеспечивающая отклик моделируемой системы на изменение энергии или температуры.

Связь энергетических параметров a_{ij} с параметром Флори-Хаггинса χ_{ij} задается простым соотношением [7]:

$$a_{ii} = 25 + 3,497\chi_{ii}k_BT \tag{7}$$

 $a_{ij} = 25 + 5, 157 \chi_{ij} \kappa_B r$ (7) Если $a_{ij} \sim 25$, то $\chi_{ij} \sim 0$, т.е. подсистемы і и ј хорошо смешиваются между собой. Чем больше значение a_{ij} , тем больше несовместимость подсистем.

В данной работе рассматривались модели блочных сополимеров вида $A_n B_m$ и $A_k B_m C_n$, объединяющие блоки разной жесткости.

Для диблочных полимеров жестким всегда оставался блок А. Полимеры были смоделированы посредством серии ДДЧ частиц, связанных в линейную цепь, а для задания жесткости цепи введены геометрические ограничения на «валентные углы». Все вычисления в данной работе проводились с использованием параллельного ДДЧ кода.

Преимуществом метода ДДЧ является возможность использования больших значений шага по времени при интегрировании уравнений движения, что дает возможность исследовать системы с большим количеством частиц, чем в других методах моделирования.

Параметры моделируемых полимерных систем представлены в таблице.

Вестник ТвГУ. Серия «Химия». 2015. № 2

Блок-		Тонкие пленки диблок-			Расплав триблок-		
сополимеры		сополимеров, вида A _n B _m			сополимеров, вида $A_k B_m C_n$		
		A_8B_8	A_8B_8	A_2B_{14}	$A_8B_8C_8$	$A_8B_8C_8$	$A_6B_{12}C_6$
Параметры							
Размер ячейки		$32 \times 32 \times 24$			$24 \times 24 \times 24$		
Число частиц,		73728			41472		
$n_{ucm.}$							
Число цепей,		4608			1728		
n_u .							
Длина цепи, N		16			24		
Параметр	χ_{AB}	60	40	40	60	60	60
Флори-	χ _{BB}	25	25	25	25	25	25
Хаггинса,	χΑΑ	25	25	25	25	25	25
χ	ΧAC	-	-	-	60	25	25
	Ҳвс	-	-	-	25	60	60
	χсс	-	-	-	25	25	25
Объемные доли		$f_{A} = f_{B} = 1/2$	$f_A = f_B = 1/2$	$f_A = f_B =$	f _A =f _B =f _C	f _A =f _B =f _C	$f_{\rm A} = 1/4$
блоков, $Ø_{A}$, $Ø_{B}$ и				1/7	= 1/3	= 1/3	$f_{\rm B} = 1/2$
Ø _C							$f_{\rm C} = 1/4$

Параметры, используемые при расчете методом ДДЧ

При компьютерном моделировании блочных систем были получены различные морфологии тонких пленок диблок-сополимеров (рис. 1) (ламеллярная, «двойной ламеллярный слой», промежуточная фаза между сферами и цилиндрами) и триблок-сополимеров в расплаве (рис. 2) (цилиндрическая, биконтинуальная, ламеллярная).

На рис. 1,а, б изображена одна и та же система с использованием различных программ визуализации. Видно, что образуются ламели, почти перпендикулярные подложке. На рис.1,б видно, что ламель, образованная жесткоцепным блоком, перфорирована. Для гибкоценых блок-сополимеров в этих условиях образуется обычная ламеллярная фаза. Моделирование ламеллярной фазы с ориентацией ламелей вдоль подложки вызывает некоторые трудности. При невозможности уложить целое число ламеллярных слоев по толщине пленки возникают структуры, показанные на рис. 1,в, г. Первый слой ложится на подложку, а последующие располагаются вдоль нормали к поверхности. Подобных проблем не возникает при расположении ламелей перпендикулярно подложке, при несовпадении латеральных размеров ячейки с целым числом периодов ламеллярной структуры, ламели поворачиваются по отношению к осям X, Y на некоторый угол, обеспечивающий выполнение этого условия.

Вестник ТвГУ. Серия «Химия». 2015. № 2

Рис. 1. Фотографии микрофазного расслоения для тонких пленок диблоксополимеров: а,б-ламеллярная (A₈B₈); в,г-«двойной ламеллярный слой» (A₈B₈); д,е-промежуточная фаза между сферами и цилиндрами (A₂B₁₄)

Как показывает рис. 1,д, на первый взгляд мы наблюдаем образование мицелл, но при просмотре эволюции (рис. 1,е) системы можно заметить, что у нас образовалась промежуточная фаза между сферическими мицеллами и цилиндрами. Образование данной структуры может быть обусловлено несколькими факторами: недостаточностью времени счета или же при быстром изменении параметров системы, вследствие чего система как бы «замерзла».

Для триблок-сополимера с одинаковым содержанием $(f_A = f_B = f_C = 1/3)$ одноименных блоков были обнаружены две принципиально различные структуры. В первом случае, когда гибкоцепные блоки В и С отталкивались от жесткого блока А, наблюдалось формирование гексагонально упакованных цилиндров (рис. 1,а, б); во втором случае (жесткоцепной блок А не совместим с блоком В, а гибкоцепные блоки В и С несовместимы между собой, см. табл.) образовалась так называемая биконтинуальная сетевая структура (рис. 1, в, г).

При изменении соотношения компонентов системы 2 ($f_A = 0.25$; $f_B = 0.5$; $f_C = 0.25$) и неизменных параметрах взаимодействия получается ламеллярная морфология, что говорит о большой изменчивости структуры трибло-сополимеров по отношению к внешним воздействиям и качественному составу полимеров.

Рис. 2. Морфологии триблок-сополимеров, возникающие в расплаве триблок-сополимеров: а,б – цилиндрическая (A₈B₈C₈); в,г – биконтинуальная (A₈B₈C₈); д,е – ламеллярная микроструктуры (A₆B₁₂C₆)

Для оценки расположения и периода полученных структур были рассчитаны парные корреляционные функции $g_A(r)$ (рис. 3).

корреляционная функция показывает корреляции Парная плотности сегментов (А, В или С) в блочной системе. На рис. 3, г плавно затухающие осцилляции дают представление о формировании структуры с хорошо выраженным дальним порядком. Период для данной структуры значительно больше, нежели для биконтинуальной сетевой морфологии триблок-сополимера A₈B₈C₈ (рис. 3,д). Для ламеллярных структур, полученных для тонких пленок диблоксополимера A₈B₈ (рис. 3,а, б) и расплава триблок-сополимера A₆B₁₂C₆ (рис. 3.е) мы видим, что парная корреляционная функция синусоидально осциллирует с постепенным затуханием осцилляций, но для структуры «двойной ламеллярный слой» максимальный пик функции лежит несколько выше. Для промежуточной фазы (рис. 3,е), как мы видим, четко выделяются два пика. Последующие пики размыты и стремятся к нулю, выделить их максимум не представляется возможным. Данный тип парной корреляционной функции указывает на образование промежуточной структуры.

Рис. 3. Парные корреляционные функции для полученных микроструктур: А – ламеллярная фаза (A_8B_8); б – «двойной ламеллярный слой» (A_8B_8); в – промежуточная фаза между сферами и цилиндрами(A_2B_{14}); г – цилиндрические агрегаты ($A_8B_8C_8$); д – биконтинуальная структура ($A_8B_8C_8$); е – ламеллярная фаза ($A_6B_{12}C_6$)

Работа выполнена при финансовой поддержке гранта РФФИ № 13-03-01010-а.

Список литературы

- 1. Kim H.C., Park S.M., Hinsberg W.D. // Chem Rev. 2010. V. 110. P. 146–177.
- 2. Халатур П.Г. // Соросовский образоват. журн.. 2001. Т.7, № 4. С. 36-43.
- 3. Аскадский А.А., Хохлов А.Р. Введение в физико-химию полимеров. М.: Научный мир, 2009. 384 с.

- 4. Doi M., Edwards S.F. The Theory of Polymer Dynamics. Oxford: Oxford Science Publications. UK, 1986.
- 5. Allen M. P. Tildesley. D. J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987. 454 p.
- 6. Espanol P., Warren P. // Europhys. Lett. 1995. V. 30. P. 191.
- 7. Groot R.D., Warren P.B. // J. of Chem. Phys. 1997. V. 107. P. 4423.

PHASE BEHAVIOUR OF DI-AND TRIBLOCK COPOLYMERS WITH VARIABLE BLOCK STIFFNESS

N.V. Ilina, T.Yu. Selina, A.S. Pavlov

Tver State University Department jf physical chemistru

Computer simulation of self-organization processes both in diblock copolymer thin films and triblock copolymer melt with variable stiffness of blocks is performed using dissipative particles dynamics. As a result of computer modelling, the following morphologies are observed: lamellar, bi-continuous, hexagonal and centered cubic structures. It is found that particular morphology of the sample depends on both polymer composition and «segment-segment» interactions.

Keywords: computer simulation, block copolymers, microphase separation.

Об авторах:

ИЛЬИНА Наталья Валерьевна – студентка 1 курса магистратуры химикотехнологического факультета Тверского государственного университета, еmail: natalya_ilina_1993@mail.ru

СЕЛИНА Татьяна Юрьевна – студентка 1 курса магистратуры химикотехнологического факультета Тверского государственного университета, еmail: <u>tatyana.selina@bk.ru</u>

ПАВЛОВ Александр Сергеевич – кандидат химических наук, доцент кафедры физической химии Тверского государственного университета, e-mail: as_pavlov@list.ru