ФИЗИЧЕСКАЯ ХИМИЯ

УДК: 544.163.2:54.024

ЭЛЕКТРОННОЕ СТРОЕНИЕ РАДИКАЛОВ ТАУТОМЕРОВ ТИОКАРБОНОВЫХ КИСЛОТ

Н.П. Русакова ¹, В.В. Туровцев ^{1, 2}, Ю.Д. Орлов ¹

¹Тверской государственный университет *Кафедра общей физики*²Тверская государственная медицинская академия *Кафедра физики, математики и медицинской информатики*

В рамках «квантовой теории атомов в молекулах» (QTAIM) изучено электронное строение радикалов гомологического ряда таутомеров тиокарбоновых кислот ($\mathrm{CH_3(CH_2)}_n\mathrm{CH}^\bullet\mathrm{COSH}$, где $0 \le n \le 7$). Определены параметры переносимости групп. Выявлено индуктивное влияние $\mathrm{CH}^\bullet\mathrm{COSH}$ фрагмента. Построена качественная шкала электроотрицательности групп ($\chi(R)$) для $\mathrm{CH_3(CH_2)}_n\mathrm{CH}^\bullet\mathrm{COSH}$ и проведено сравнение со шкалой $\chi(R)$ молекул Alk-COSH.

Ключевые слова: электронные свойства, электроотрицательность, тиокарбоновые кислоты, индуктивный эффект, радикальный центр.

Различные типы атомных зарядов используются как дескрипторы в моделях QSAR и QSPR, в задачах «drug design» и в количественных корреляциях «структура—свойство», например, при оценке биологической активности [1]. В «квантовой теории атомов в молекулах» (QTAIM) «эффективный» заряд атома в соединении (*M*) есть сумма заряда электронной плотности, взятой в бассейне «эффективного» атома, плюс заряд ядра [2].

Изменение заряда атома $q(\Omega)$ или группы q(R) под влиянием соседних структурных элементов служит количественной мерой электроотрицательности (γ) – способности Ω или R в соединениях оттягивать на себя электронную плотность валентно связанных заместителей [3]. Таким образом, из сравнения q(R) в различных Mполучить качественную онжом оценку (шкалу) электроотрицательностей $\chi(R)$. С понятием χ связано понятие эффекта (І-эффекта), являющегося индуктивного проявлением электростатических внутримолекулярных взаимодействий [3-6].

Исследование радикалов методами классической химии довольно дорогостоящий и сложный технически процесс. Причина этого – их высокая реакционная способность и, как следствие, короткое

время существования. Целью данного исследования является детальное изучение электронного строения соединений гомологических рядов таутомеров тиокарбоновых кислот ($\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{C}^{\bullet}\mathrm{HC}(\mathrm{S})\mathrm{OH}$ и $\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{C}^{\bullet}\mathrm{HC}(\mathrm{O})\mathrm{SH}$, где $0 \le n \le 7$) в рамках QTAIM [2], анализ индуктивного влияния группы со свободной валентностью $\mathrm{C}^{\bullet}\mathrm{H}$ на алкильную цепь и определение радикального центра в M.

 $CH_3(CH_2)_nC^{\bullet}HC(S)OH$ Оптимизация геометрий $CH_3(CH_2)_n C^{\bullet}HC(O)SH$, где $0 \le n \le 7$, была проведена в программе GAUSSIAN 03 с помощью метода B3LYP /6-311++g(3df,3pd) 6d 10f [7]. Применение данного метода к расчёту параметров равновесных состояний соединений обосновано в [8]. Заряды $q(\Omega)$ и спиновая плотность $\sigma(\Omega)$ «топологических атомов» Ω вычислены численным интегрированием пределах межатомных поверхностей В изоповерхности электронной плотности 0.001 а.е. с помощью программы AIMALL [9]. Параметры функциональных групп q(R) и $\sigma(R)$ были суммированы из характеристик Ω . Погрешность расчёта q(R)составила не более 0.001 а.е., а $\sigma(R)$ не более 0.01 (1 а.е. заряда=1.6·10⁻¹⁹ Кл). Качественное определение γ групп R в радикалах проводилось посредством сравнения зарядов q(R). Для каждого соединения была шкала $\chi(R)$. индивидуальная Общая исследованных структур, составленная на основе сопоставления q(R)всех функциональных групп, описана в [10].

Результаты проведенного исследования зарядов q и спиновой плотности σ функциональных групп (q(R) и $\sigma(R))$ радикалов гомологических рядов $\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{C}^{\bullet}\mathrm{HC}(\mathrm{S})\mathrm{OH}$ (тионная форма) и $\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{C}^{\bullet}\mathrm{HC}(\mathrm{O})\mathrm{SH}$ (тиольная форма), где $0 \le n \le 7$, отображены в табл. 1-4. Величины $\sigma(R)$ указаны в табл. 2 и 4 только для первых трех гомологов из каждого ряда, поскольку в остальных случаях $(\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{C}^{\bullet}\mathrm{HCOSH},$ при $2 \le n \le 7)$ распределение σ аналогично $\mathrm{CH_3}\mathrm{CH_2}\mathrm{C}^{\bullet}\mathrm{HCOSH}.$

Расчет q(R) для $CH_3(CH_2)_nC^{\bullet}HC(O)SH$ (табл. 1) показал уменьшение значений q(C(O)SH) в изученном ряду радикалов, по сравнению с исходными молекулами Alk-C(O)SH [10] на 0.020 а.е. Величина заряда группы $C^{\bullet}H$ при $n \geq 2$ становится неизменной. Совместное индуктивное влияние групп $C^{\bullet}H$ и C(O)SH распространяется вдоль углеводородной цепи на ближайшие четыре группы CH_2 . Проявления стерического воздействия группы C(O)SH в ряду радикалов $CH_3(CH_2)_nC^{\bullet}HC(O)SH$, по сравнению с Alk-C(O)SH [10], не наблюдается.

Таблица 1. Распределение заряда по группам q(R) в радикалах $CH_3(CH_2)_nC^{\bullet}HC(O)SH$, где $0 \le n \le 7$, в а.е.

n	CH ₃	CH ₂	CH ₂	CH ₂	CH_2	CH ₂	CH ₂	CH_2	C•H	C(O)SH
0	0.139	_	_	_	_	_	_	_	0.024	-0.163
1	0.032	_	_	_	_	_	_	0.123	0.012	-0.168
2	-0.002	0.058	_	_	_	_	_	0.104	0.011	-0.171
3	-0.001	0.030	_	_	_	_	0.028	0.103	0.011	-0.172
4	-0.006	0.021	_	_	_	0.015	0.028	0.103	0.011	-0.173
5	-0.010	0.019	_	_	0.006	0.014	0.029	0.102	0.011	-0.173
6	-0.011	0.017	_	0.004	0.005	0.015	0.027	0.104	0.011	-0.173
7	-0.013	0.017	0.002	0.004	0.006	0.015	0.028	0.103	0.011	-0.173

Построение качественной шкалы $\chi(R)$ для гомологического ряда радикалов основано на сопоставлении парциальных зарядов функциональных групп. Так в радикале тиопропионовой кислоты $\mathrm{CH_3C}^{\bullet}\mathrm{HC}(\mathrm{O})\mathrm{SH}$ (табл. 1.) сравнение q(R) представлено соотношением

$$q(CH_3) > q(C^{\bullet}H) > q(C(O)SH).$$

Соответственно индивидуальная шкала $\chi(R)$ выглядит следующим образом:

$$\gamma(CH_3) < \gamma(C^{\bullet}H) < \gamma(C(O)SH),$$

а общая шкала $\chi(R)$ для всего ряда имеет вид

$$\chi(CH_2) < \chi(CH_3) < \chi(C^{\bullet}H) < \chi(C(O)SH). \tag{1}$$

При сравнении данного соотношения со шкалой $\chi(R)$ ряда $\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{C}(\mathrm{O})\mathrm{SH}$ [11] была отмечена идентичность расположения на шкале неравенств групп $\mathrm{CH_2}$, $\mathrm{CH_3}$ и $\mathrm{C}(\mathrm{O})\mathrm{SH}$.

Анализ величин $\sigma(R)$ в $\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{C}^{\bullet}\mathrm{HC}(\mathrm{O})\mathrm{SH}$ (табл. 2.) позволяет определить фрагмент $\mathrm{C}^{\bullet}\mathrm{H}$ как радикальный центр. Небольшая часть избыточной α — плотности ($\rho_{\alpha}(r)$) наблюдается в бассейне группы $\mathrm{C}(\mathrm{O})\mathrm{SH}$, конденсируясь на атоме O ($\sigma(\mathrm{O})$ = 0.18). Таким образом, свободную валентность (отмечена знаком \bullet) можно отнести к атому углерода группы $\mathrm{C}^{\bullet}\mathrm{H}$.

Таблица 2 Распределение спиновой плотности $\sigma(R)$ в радикалах $CH_3(CH_2)_nC^{\bullet}HC(O)SH$, где $n\leq 2$

n	Группы				
	CH ₃	CH ₂	CH ₂	C [•] H	C(O)SH
0	0.07	_	_	0.69	0.24
1	0.04	0.04	_	0.68	0.24
2	0.01	0.04	0.03	0.68	0.24

В табл. 3. представлены величины q(R) гомологического ряда радикалов тионной формы таутомеров тиокарбоновых кислот $\mathrm{CH}_3(\mathrm{CH}_2)_n\mathrm{C}^{\bullet}\mathrm{HC}(\mathrm{S})\mathrm{OH}$, где $0 \le n \le 7$. Данные по q(R) демонстрируют меньшее значение $q(\mathrm{C}(\mathrm{S})\mathrm{OH})$ в радикалах по сравнению с исходными молекулами [12] на 0,012 а.е. В $\mathrm{CH}_3(\mathrm{CH}_2)_n\mathrm{C}^{\bullet}\mathrm{HC}(\mathrm{S})\mathrm{OH}$, при n > 0, величина q(R) на группе $\mathrm{C}^{\bullet}\mathrm{H}$ варьирует в пределах расчётной погрешности.

Индуктивный эффект фрагмента $C^{\bullet}HC(S)OH$ распространяется вдоль углеводородной цепи на ближайшие четыре CH_2 . Отмечено отсутствие стерического эффекта от функциональной группы C(S)OH в ряду радикалов $CH_3(CH_2)_nC^{\bullet}HC(S)OH$ по сравнению с гомологами исходного ряда Alk-C(S)OH [табл. 2.].

Таблица 3 Распределение заряда по группам q(R) в радикалах $CH_3(CH_2)_nCH^{\bullet}C(S)OH$, где $0 \le n \le 7$, в а.е.

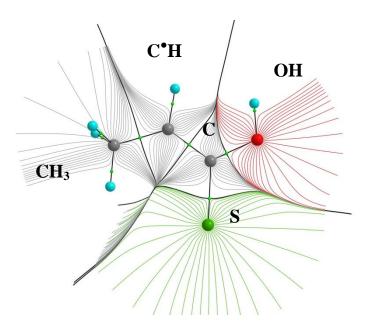
$CH_3(CH_2)/(CH_2)$										
n	CH ₃	CH ₂	CH ₂	CH ₂	CH_2	CH ₂	CH_2	CH ₂	C•H	C(S)O
0	0.129	-	-	-	-	-	-	-	0.011	-0.140
1	0.027	_	_	-			_	0.118	-0.001	-0.144
2	0.009	0.038	_	-	-	-	_	0.101	-0.001	-0.146
3	-0.003	0.028	_	_			0.023	0.100	-0.001	-0.148
4	-0.007	0.020	_	_	_	0.013	0.023	0.100	-0.001	-0.148
5	-0.010	0.019	_		0.006	0.013	0.023	0.100	-0.001	-0.148
6	-0.012	0.017	_	0.004	0.005	0.013	0.023	0.100	-0.001	-0.149
7	-0.013	0.016	0.002	0.003	0.006	0.013	0.024	0.099	-0.001	-0.149

Из сопоставления q(R) функциональных групп была составлена качественная шкала $\chi(R)$ (аналогично $\chi(R)$ для $\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{CH}^{\bullet}\mathrm{C}(\mathrm{O})\mathrm{SH}$, где $0 \le n \le 7$) для гомологического ряда $\mathrm{CH_3}(\mathrm{CH_2})_n\mathrm{CH}^{\bullet}\mathrm{C}(\mathrm{S})\mathrm{OH}$, где $0 \le n \le 7$:

$$\chi(CH_2) < \chi(CH_3) < \chi(C^{\bullet}H) < \chi(C(S)OH)$$
 (2)

Сравнение q(C(S)OH) и q(C(O)SH) (табл. 1 и 3) со значением заряда «невозмущённой» CH_2 дало следующее соотношение:

$$\chi(CH_2) < \chi(CH_3) < \chi(C^{\bullet}H) < \chi(C(S)OH) < \chi(C(O)SH)$$
(3)


Полученное неравенство для изомеров радикалов $CH_3(CH_2)_nCH^{\bullet}COSH$ (3), где $0 \le n \le 7$, хорошо согласуется со шкалой $\chi(R)$ для молекул тиокарбоновых кислот из [11 и 12].

Изучение табл. 4 показывает невозможность однозначно выделить радикальный центр структуры, так как спиновая плотность распределилась между двумя группами CH^{\bullet} и C(S)OH ($\sigma(CH^{\bullet}) = \sigma(S^{\bullet}) = 0,50$). То есть в радикалах тионной формы тиокарбоновых кислот ряда $CH_3(CH_2)_nCH^{\bullet}C(S)OH$, начиная с $CH_3CH^{\bullet}C(S)OH$ (см. рисунок), наблюдается делокализация избыточной α -плотности между этими группами с небольшим увеличением плотности β -электронов на расположенном между ними атоме углерода.

 $\begin{tabular}{ll} $T\ a\ f\ \pi\ u\ u\ a\ 4$\\ Pаспределение спиновой плотности $\sigma(R)$ в радикалах <math display="block"> $CH_3(CH_2)_nCH^{\bullet}C(S)OH$, $\Gamma de\ n\le 2$\\ \end{tabular}$

n	Груп	ПЫ				Топологические группы и атомы			
	CH ₃	CH_2	CH_2	C [•] H	C(S)OH	С	ОН	S	
0	0.05	_	_	0.51	0.44	-0.05	0.00	0.50	
1	0.03	_	0.02	0.50	0.45	-0.05	0.00	0.50	
2	0.01	0.03	0.02	0.50	0.44	-0.05	0.00	0.50	

В работе изучено электронное строение радикалов таутомеров тиокарбоновых кислот $CH_3(CH_2)_nCH^{\bullet}COSH$, где $0 \le n \le 7$, найдено распределение плотности неспаренного электрона, заряды групп, определены параметры переносимости. Показано, что индуктивное влияние фрагмента $CH^{\bullet}COSH$ распространяется на четыре ближайшие группы CH_2 вдоль углеродной цепи. Построена качественная шкала $\chi(R)$ для $CH_3(CH_2)_nCH^{\bullet}COSH$ и проведено сравнение со шкалой $\chi(R)$ исходных молекул. Отмечено идентичное расположение групп CH_2 , CH_3 , C(S)OH и C(O)SH на молекулярной и радикальной итоговых шкалах $\chi(R)$. Положение группы со свободной валентностью $C^{\bullet}H$ определено как $\chi(CH_3) < \chi(C^{\bullet}H) < \chi(CSOH)$.

Молекулярный граф и векторное поле градиента электронной плотности $CH_3CH^{\bullet}C(S)OH$ радикала этил-тиокарбоновой кислоты с указанием положения критических точек связывающих путей и проходящих через эти точки поверхностей нулевого потока градиента электронной плотности (межатомных поверхностей) для групп CH_3 , CH^{\bullet} , C, S и OH.

Работа поддержана грантом РФФИ(проект 14-03-97502).

Список литературы

- Baskin I.I., Keshtova S.V., Palyulin V.A., Zefirov N.S. // Combining Molecular Modelling with the Use of Artificial Neural Networks as an Approach to Predict Substituent Constants and Bioactivity. In Molecular Modeling and Prediction of Bioactivity// K. Gundertofte; F.S. Jorgensen, Eds.; Klummer Academic/Plenum Publishers: New York, Boston, Dordrecht, London, Moscow; 1999, P. 468–469.
- 2. Бейдер Р. Атомы в молекулах: Квантовая теория. М.: Мир, 2001. 532 с.
- 3. Верещагин А.Н. Индуктивный эффект. М.: Наука. 1987. 326 с.
- 4. Паулинг Л. (Полинг) Природа химической связи, М., Л., 1947, 440 с.
- 5. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. //Журн. структур. химии. 2015. Т. 56, № 1. С. 29–33.
- 6. Русакова Н. П., Туровцев В. В., Орлов Ю. Д.. //Журн. приклад. химии. 2011. Т. 84, вып. 9. С. 1578–1580.
- 7. Frisch M.J., Trucks G.W. at all. Gaussian 03 (Revision E 0.1 SMP). Gaussian Inc., Pittsburgh PA, 2007.
- 8. Орлов М.Ю., Туровцев В.В., Орлов Ю.Д. //Вестн. Башкир. ун-та. 2008. Т. 13, № 3 (I). С. 758–760.

- 9. AIMAll (Version 11.09.18, Professional), Todd A. Keith, 2010. URL: (http://aim.tkgristmill.com)
- 10. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Физико-математическое моделирование систем: материалы XII Междунар. семинара, Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет» (Воронеж, 27-28 июня 2014), 2014. Ч. 1, стр.118–124.
- 11. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Вестн. Твер. гос. ун-та. Сер.: Химия. 2010. № 10, С. 4—8.
- 12. Русакова Н.П., Туровцев В.В., Орлов Ю.Д. // Вестн. Твер. гос. ун-та. Сер.: Химия. 2013. №16, с.170–179.

ELECTRON STRUCTURE OF RADICAL TAUTOMERS OF THIOCARBOXYLIC ACIDS

N.P. Rusakova¹, V.V. Turovtsev^{1,2}, Yu.D. Orlov¹

¹Tver State University
² Tver State Medical University

In the framework of "quantum theory of atoms in molecules» (QTAIM) the electron structure of radical tautomers of a homologous series of thiocarboxylic acid (CH₃(CH₂)_nCH[•]COSH, where $0 \le n \le 7$) was studied. Parameters of transferable groups were determined. The inductive influence of CH[•]COSH fragment was revealed. A qualitative scale of groups electronegativity (χ (R)) for the CH₃(CH₂)_nCH[•]COSH was constructed and compared with the scale of χ (R) in molecules Alk-COSH.

Keywords: electron properties, electronegativity, thiocarboxylic acids, inductive effect, radical center

Об авторах:

РУСАКОВА Наталья Петровна — заведующая базовой учебной лабораторией общей физики Тверского государственного университета, e-mail: d002186@tversu.ru, a002186@mail.ru

ТУРОВЦЕВ Владимир Владимирович — доктор физико-математических наук, заведующий кафедрой физики, математики и медицинской информатики Тверскго государственного медицинского университета Росздрава РФ, *e-mail:* turtsma@tversu.ru

ОРЛОВ Юрий Димитриевич — доктор химических наук, профессор, заведующий кафедрой общей физики Тверского госуниверситета, e-mail: $\underline{Yurij.Orlov@tversu.ru}$