УДК 544.344.3

КОРРЕЛЯЦИЯ ДАННЫХ О ПАРОЖИДКОСТНОМ РАВНОВЕСИИ В ТРОЙНЫХ СИСТЕМАХ, СОДЕРЖАЩИХ ЧЕТВЕРТИЧНЫЕ СОЛИ АММОНИЯ И ФОСФОНИЯ, С ПОМОЩЬЮ ЭЛЕКТРОЛИТНОЙ МОДЕЛИ UNIFAC

А.Н. Евдокимов, А.В. Курзин

Санкт-Петербургский государственный университет промышленных технологий и дизайна

Высшая школа технологии и энергетики, кафедра органической химии

Электролитная модель UNIFAC использована для описания парожидкостного равновесия в системах, содержащих смешанный растворитель и четвертичную аммониевую (и фосфониевую) соль. Среднее абсолютное отклонение расчетных данных от экспериментальных значений по мольному содержанию растворителей в паровой фазе составило 0.004—0.006.

Ключевые слова: равновесие жидкость—пар, четвертичные соли аммония и фосфония, электролитная модель UNIFAC.

Исследование термодинамических свойств солевых систем является важной и актуальной задачей физической химии растворов. Добавление солей применяется в технологических процессах очистки и разделения веществ — солевой экстракции и ректификации. Для водноорганических и смешанных органических солевых систем в литературе приводятся данные о растворимости и коэффициентах активности в широком интервале концентраций и температур. Среди тройных систем с одним нелетучим компонентом (солью) систематически изучены многие растворы неорганических солей.

Особый интерес вызывают растворы солей, имеющих объемные органические катионы или (и) анионы, в том числе и потому, что многие такие соли (в отличие от неорганических солей) хорошо растворимы в органических растворителях. В огромном многообразии литературных данных о фазовых равновесиях в электролитсодержащих растворах имеются немногочисленные сведения о парожидкостном равновесии в тройных системах на основе смешанного растворителя, содержащие четвертичные аммониевые [1–11] и фосфониевые соли [12]. Полуэмпирические модели достаточно широко используются для анализа и прогнозирования разнообразных физико-химических свойств реальных жидкофазных систем. Их применение чрезвычайно важно для решения многих задач связанных, например, с разделением, концентрированием и очисткой веществ, а также некоторых других технологических процессов, оптимизация которых требует знания

параметров парожидкостных равновесий. Для расчета фазовых равновесий в системах, состоящих из смешанного растворителя и электролитов, предложено несколько моделей, основанных на концепциях локального состава или группового вклада. При этом для тройных содержащих четвертичные аммониевые систем, фосфониевые соли, наиболее часто используется электролитная модель NRTL [13]. В настоящей работе более точная электролитная модель UNIFAC [14] использована для корреляции экспериментальных данных о парожидкостном равновесии в тройных системах, содержащих вышеуказанные органические соли. Эта модель группового вклада основывается на сочетании классической модели UNIFAC [15] с теорией Дебая-Хюккеля.

Экспериментальные данные о парожидкостном равновесии для тройных систем, содержащих четвертичные соли аммония и фосфония: ацетонитрил – вода – бромид тетрапропиламмония, метанол – толуол – тетрафенилборат тетрабутиламмония, метанол – толуол – хлорид трифенилбензилфосфония метанол бензол И хлорид тетрафенилфосфония, взяты литературы [6; 7; 12; 16]. ИЗ энергетические параметры Геометрические (R_i) Q_i И модели электролитной UNIFAC для рассматриваемых систем, рассчитанные на основании собственных опубликованных экспериментальных данных, приведены в табл. 1–3.

T а б л и ц а 1 Параметры $(a_{ij},\,R_i$ и $Q_i)$ электролитной модели UNIFAC для системы ацетонитрил – вода – бромид тетрапропиламмония

a_{ij} , K									
	H_2O	CCN	$(C)_3N$	CH	Br				
H_2O	0.0	112.60	304.0	300.0		-1058.6			
CCN	242.8	0.0	-354.10	24.	82	541.87			
$(C)_3N$	-598.8	-354.1	0.0	-83.98		-736.17			
CH_2	1318.0	597.0	206.6	0.0		-673.8			
Br ⁻	-372.5	-2877.78	498.45	3106.4		0.0			
	$R_i u Q_i$								
	H_2O	CH ₃ CN	CH_2N^+	CH_3	CH ₂	Br			
R_i	0.92	1.8701	0.648	0.9011 0.6744		1.2331			
Q_i	1.40	1.7240	0.420	0.8480	0.5400	1.1510			

 $\begin{tabular}{l} $T\ a\ f\ n\ u\ u\ a\ 2$ \\ Π араметры\ (a_{ij},\ R_i\ u\ Q_i)\ электролитной\ модели\ UNIFAC\ для\ системы \\ M етанол\ -\ толуол\ -\ тетрафенилборат\ тетрабутиламмония \\ \end{tabular}$

a_{ij} , K										
		4	4CH	CH ₃ OH	I	$(C)_3$	N		CH_2	$(Ph)_4B^-$
ACH			0.0	637.3		90.4	9	-	11.12	344.3
CH_3OH		-	50.0	0.0		53.9	•	1	16.51	-76.12
$(C)_3N$		-2	223.9	-406.8		0.0		-8	83.98	467.9
CH_2		6	51.13	697.2		206.	6		0.0	211.2
$(Ph)_4B^-$		-4	486.7	2131.1		-570	.9	-7	22.24	0.0
$R_i u Q_i$										
	ACC	CH_3	ACH	CH_3OH		CH_2N^+	CF	I_3	CH_2	$(Ph)_4B^-$
R_i	0.90)11	0.5313	1.4311		0.648	0.90)11	0.6744	3.53
Q_i	0.84	180	0.400	1.4322		0.420	0.84	180	0.5400	3.79

 $\label{eq:Tadauqa} \begin{array}{c} \ \, T\ a\ f\ n\ u\ q\ a\ 3 \\ \Pi араметры\ (a_{ij},\ R_i\ u\ Q_i)\ электролитной\ модели\ UNIFAC\ для\ систем\\ \ \, метанол\ -\ толуол\ -\ хлорид\ трифенилбензилфосфония\\ \ \, u\ метанол\ -\ бензол\ -\ хлорид\ тетрафенилфосфония \end{array}$

a_{ij} , K							
	$ACCH_2$		ACH	CH ₃ OH	CH_2P	ACP	Cl
$ACCH_2$	0.0		-146.8	603.2	218.6	-4122.9	569.2
ACH	167.0		0.0	637.3	-96.4	337.4	486.3
СН ₃ ОН	-44.5		-50.0	0.0	875.8	-42.1	102.8
CH_2P	129.7		-1711.2	288.6	0.0	417.7	3707.3
ACP	55.8		610.8	-940.1	602.4	0.0	-703.8
Cľ	-901.4		-1106.5	7604.5	471.5	68.4	0.0
$R_i u Q_i$							
	$ACCH_3$	$ACCH_2$	ACH	CH₃OH	CH_2P^+	ACP^+	Cl
R_i	0.9011	1.0396	0.5313	1.4311	1.14	1.02	0.9861
Q_i	0.8480	0.660	0.400	1.4322	1.08	0.93	0.9917

Средние абсолютные отклонения расчетных и экспериментальных значений мольных долей растворителей в паровой фазе при использовании электролитной модели UNIFAC составили 0,004–0,007 (таблица 4).

Таблица 4 Расчет парожидкостного равновесия в системах, содержащих органические аммониевые и фосфониевые соли, с помощью электролитной модели UNIFAC

Система	Кол-во	Среднее абсолютное
	эксп.	отклонение расчетных данных
	значений	от экспериментальных
		значений по мольному
		содержанию растворителя в
		паровой фазе, $ \Delta y ^a$
ацетонитрил – вода – бромид	64	0.004
тетрапропиламмония		
метанол – толуол –	24	0.006
тетрафенилборат		
тетрабутиламмония		
метанол – толуол – хлорид	60	0.006
трифенилбензилфосфония		
метанол – бензол – хлорид	24	0.006
тетрафенилфосфония		

Примечание:
$$a|\Delta y| = \frac{1}{n} \sum_{i=1}^{n} |y_{i,1}(\Im \kappa c n.) - y_{i,1}(pac u.)|$$
, где n – количество

экспериментальных точек

Согласно литературным данным аналогичные абсолютные отклонения для электролитной модели NRTL составили 0.008–0.010. Таким образом, электролитная модель UNIFAC может быть использована с высокой точностью для корреляции и предсказания фазовых равновесий в электролитных системах, содержащих органические аммониевые и фосфониевые соли.

Список литературы

- 1. Burns J.A., Furter W.F. // Adv. Chem. Ser. 1976. V. 155, Chapter 8. P. 99–127.
- 2. Slusher J.T., Decker K.J., Liu H., Vega C.A., Cummings P.T., O'Connell J.P. // J. Chem. Eng. Data. 1994. V. 39, № 3. P. 506–509.
- 3. Slusher J.T., Cummings P.T., Hu Y., Vega C.A., O'Connell J.P. // J. Chem. Eng. Data. 1995. V. 40, № 4. P. 792–798.

- 4. Lee L.-S., Huang M.-Y., Hsu H.-L. // J. Chem. Eng. Data. 1999. V. 44, № 3. P. 528–531.
- 5. Kurzin A.V., Evdokimov A.N., Poltoratskiy G.M., Platonov A.Yu., Gusev V.E., Golubeva Yu.M. // J. Chem. Eng. Data. 2004. V. 49, № 2. P. 208–211.
- 6. Kurzin A.V., Evdokimov A.N., Antipina V.B., Pavlova O.S. // J. Chem. Eng. Data. 2006. V. 51, № 4. P. 1361–1363.
- 7. Kurzin A.V., Evdokimov A.N., Antipina V.B., Pavlova O.S. // J. Chem. Eng. Data. 2008. V. 53, N 6. P. 1411–1413.
- 8. Yang C., Ma S., Yin X. // J. Chem. Eng. Data. 2011. V. 56, № 10. P. 3747–3751.
- 9. Yang C., Yin X., Ma S. // J. Chem. Eng. Data. 2012. V. 57, № 1. P. 66–71.
- 10. Yang C., Sun F., Ma S., Yin X., Zeng H. // J. Chem. Eng. Data. 2012. V. 57, № 10. P. 2696–2701.
- 11. Yang C., Zeng H., Yin X., Ma S., Sun F., Li Y., Li J. // J. Chem. Thermodyn. 2012. V. 53. P. 158–166.
- 12. Kurzin A.V., Evdokimov A.N., Antipina V.B., Pavlova O.S., Gusev V.E. // J. Chem. Eng. Data. 2007. V. 52, № 6. P. 2174–2176.
- 13. Mock B., Evans L.B., Chen C.-C. // AIChE J. 1986. V. 32, № 10. P. 1655–1664.
- 14. Kikic I., Fermeglia M., Rasmussen P. // Chem. Eng. Sci. 1991. V. 46, № 11. P. 2775–2780.
- 15. Fredenslund A., Gmehling J., Rasmussen P. Vapor–liquid equilibria using UNIFAC. A group contribution method. Amsterdam: Elsevier, 1977. 380 p.
- 16. Франчук В.Б. Фазовые равновесия в системах на основе солей с объемными органическими ионами: дис. ... канд. хим.наук. СПб.: СПбГТУРП, 2008. 132 с.

CORRELATION OF VAPOUR-LIQUID EQUILIBRIUM DATA IN THE TERNARY SYSTEMS CONTAINING QUATERNARY AMMONIUM AND PHOSPHONIUM SALTS WITH AN ELECTROLYTE UNIFAC MODEL

A.N. Evdokimov, A.V. Kurzin

Saint-Petersburg State University of Industrial Technologies and Design High School of Technology and Energetic

The electrolyte UNIFAC model was effectively used for the correlation of vapour-liquid equilibrium data in the systems containing mixed solvent and quaternary ammonium or phosphonium salt. Mean absolute deviations of solvent mole fraction in vapour phase were 0.004-0.006.

Key words: Vapour-Liquid Equilibrium, Quaternary Ammonium and Phosphonium Salts, Electrolyte UNIFAC Model.

Об авторах:

ЕВДОКИМОВ Андрей Николаевич — кандидат химических наук, доцент высшей школы технологии и энергетики Санкт-Петербургского государственного университета промышленных технологий и дизайна, e-mail: eanchem@mail.ru.

КУРЗИН Александр Вячеславович — кандидат химических наук, доцент высшей школы технологии и энергетики Санкт-Петербургского государственного университета промышленных технологий и дизайна, e-mail: zakora@mail.ru.