ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547-326; 544.723.2

СИНТЕЗ И СВОЙСТВА ОЛИГОМЕРНЫХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ НА ОСНОВЕ МЕТАКРИЛОВОЙ КИСЛОТЫ

Л.И. Ворончихина, О.Е. Журавлёв, Н.И. Кротова, Ю.А. Орликова, Е.В. Рыбаков

Тверской государственный университет Кафедра органической химии

Радикальной полимеризацией метакриловой кислоты в присутствии высших спиртов и их фракций в качестве телогенов синтезировано 8 образцов олигомеров метакриловой кислоты со степенью полимеризации от 49 до 156. Полученные олигомеры принадлежат к классу высокомолекулярных поверхностно-активных веществ.

Ключевые слова: поверхностно-активные вещества, олигомеры, телогены, полимеризация.

Большинство традиционных поверхностно-активных веществ (ПАВ) являются низкомолекулярными продуктами, хотя в настоящее время проявляется повышенный интерес к высокомолекулярным ПАВ. Эти соединения широко используются как стабилизаторы природных и синтетических дисперсных систем, а в последнее время — как оболочки микрокапсул, хотя эта группа высокомолекулярных ПАВ ещё мало изучена. Микрокапсулы, начав свой путь от копировальной бумаги, сейчас успешно используются в фармации, ракетной технике, косметике, для приготовления удобрений и т.д. [1; 2].

Промежуточными соединениями между низкомолекулярными и высокомолекулярными ПАВ являются олигомерные ПАВ (анионные и неионогенные), которые используются в текстильной промышленности и в основном в производстве химических волокон. В данной отрасли остаются актуальными задачи повышения прочности, упругости, антистатичности, адгезии, накрашиваемости волокон, эффективности замасливания, аппретирования готовых тканей и др. Эти задачи могут быть решены за счёт применения новых олигомерных ПАВ. Как правило, такие соединения получают обычно на основе соединений винилового ряда, в основном метакрилата и акрилонитрила [3; 4].

В настоящей работе представлены результаты по синтезу и свойствам олигомерных ПАВ на основе метакриловой кислоты. Исследованы условия получения олигомеров метакриловой кислоты

реакцией радикальной полимеризации в присутствии высших спиртов и их фракций в качестве телогенов-регуляторов молекулярной массы. Было изучено 8 образцов олигомеров метакриловой кислоты в условиях различного соотношения реагентов. Реакцию проводили при 90–95 °C; в качестве радикального инициатора использовали динитрил 2-азо-бисизомасляной кислоты (ДАК), который под действием температуры генерирует свободные радикалы по схеме:

Из высших спиртов и их фракций были использованы: додеканол и октанол и фракции спиртов (C_7H_{15} - C_9H_{19})ОН ($C_{10}H_{21}$ - $C_{18}H_{37}$)ОН и оксиэтилированный спирт синтанол A-3 (моноалкиловый эфир полиэтиленгликоля на основе первичных жирных спиртов).

Выделение полученных олигомеров от непрореагировавших исходных веществ осуществляли экстракцией последних эфиром. Чистоту продукта контролировали по данным ИК-спектроскопии и определением кислотного числа; содержание основного вещества определяли методом нейтрализации [5]. Полимеризацию проводили в среде толуола; соотношение метакриловой кислоты и телогена в шести синтезах было 5:1; олигомер (1) был синтезирован полимеризацией без растворителя при мольном соотношении 1:5, а олигомер (3) синтезирован полимеризацией кислоты в толуоле в отсутствие телогена и представлял собой полиакриловую кислоту (ПМАК). Условия синтеза олигомеров представлены в табл. 1.

При радикальной полимеризации в среде высшего жирного спирта возможно образование следующих продуктов

а) полиметакриловой кислоты

где R-остаток инициатора

б) теломеров кислоты и соответствующего спирта:

В литературе [6] указывается, что в случае радикальной мономеров в присутствии спиртов происходит полимеризация, если константа передачи цепи полимера на растворитель (K_n) на три порядка меньше константы роста цепи полимера (K_p). В случае если $K_n \ge K_p$ то предпочтительнее реакция теломеризации. Данные по определению кислотного числа указывают на то, что в реакциях образуются олигомеры с различной степенью полимеризации, п.

Таблица 1

Условия синтеза олигомеров		

№ образца	Телоген, г	Мономе р, МАК, г	Молярное соотношение мономер:телоген	Растворитель, толуол, мл	ДАК, г	Выход, %
1	додециловый спирт, 112.8	10.4	1:5	-	0.246	94
2	додециловый спирт, 4.5	10.6	5:1	124.9	0.246	93
3	-	10.6	-	129.9	0.246	98
4	додециловый спирт, 13.5	31.8	5:1	374.8	0.738	96
5	синтанол А-3, 28.1	42.4	5:1	487.1	0.988	99
6	октиловый спирт, 12.6	39.4	5:1	505	0.988	94
7	фракция спиртов С ₇ -С ₉ , 16.05	42.4	5:1	501	0.988	95
8	фракция спиртов С ₁₀ - С ₁₈ , 28.63	42.4	5:1	486.5	0.988	94

В ИК-спектрах обнаружены характерные полосы поглощения колебаний алифатических валентных групп, принадлежащие углеводородному радикалу v, см $^{-1}$: 2950; 2930; 2850. В области 1700 см⁻¹ наблюдается полоса поглощения карбонильной группы в карбоксиле и в области 3000-3600 см-1 имеется полоса поглощения валентных колебаний гидроксильной группы, v_{OH} .

Таким образом, при проведении полимеризации в выбранных нами условиях (молярное соотношение кислота:телоген 5:1: концентрация кислоты ~8.6% концентрация телогена – концентрация ДАК – 0.2%, растворитель толуол, температура реакции 90 °C) в случае получения образцов № 2-8 предпочтительнее идёт полимеризация с образованием олигомеров со степенью полимеризации от 156 до 49. Те же результаты получены и при проведении синтеза №1 (мольное соотношение кислота:спирт 1:5; концентрация кислоты \sim 8.4%, концентрация: телогена - 91.4%, ДАК - 0,2%, без растворителя). Определение кислотных чисел у олигомеров указывает на то, что их величины изменяются в пределах от 521.32 у олигомера № 3 до 597.7 мг/г_{КОН} у олигомера № 2 и эти значения сравнимы со значением кислотного числа у полиметакриловой кислоты, 521.32.

Для всех синтезированных олигомеров была определена кинематическая вязкость 1%-ных водных растворов и средневязкостная масса олигомеров. Кинематическую молекулярная определяли на основании полученных данных о времени истечения 1%ных водных растворов. Физико-химические свойства синтезированных олигомеров представлены в табл. 2. Наибольшей кинематической вязкостью обладает олигомер № 1. Для вычисления средней молекулярной массы были использованы результаты [5], для расчёта средневязкостной молекулярной массы полиметакриловой кислоты в водных растворах. Показано, что молекулярная масса олигомеров изменяется в пределах от 13400 у образца № 1 до 4200 у образца № 5 и подтверждает то, что синтезированные продукты – олигомеры; рН среды 1%-ных водных растворов олигомеров практически одинакова и находится в пределах от 3.1 до 2.95. Олигомеры хорошо растворяются в полярных растворителях и не растворяются в неполярных.

Таблица 2 Физико-химические свойства олигомеров

№ образца	Кислот ное число, мг/г	Кинематическая вязкость 1% водных растворов,	Средневязкостная молекулярная масса $M_{\mbox{\tiny M}} \cdot 10^{-3}$	Средняя степень полимеризации, n	рН 1% раствор ов
1	553.46	1.054	13.4	156	3.1
2	593.68	1.0109	7.5	88	2.95
3	521.32	1.04	9.9	115	2.95
4	546.28	1.012	7.8	90	3.0
5	531.79	0.991	4.2	49	3.05
6	569.44	1.008	4.73	54.9	3.05
7	563.06	0.994	4.69	54.6	3.0
8	566.94	1.0097	7.3	85	2.95

Были исследованы поверхностно-активные свойства 1%-ных водных растворов синтезированных олигомеров: поверхностное натяжение на границе раздела раствор-воздух (σ, метод наибольшего

давления пузырька), пенообразование и пеноустойчивость (A_0, Y) , смачиваемость на полиэфирной и полиамидной плёнках (θ) (табл. 3).

1 а о л и ц а Поверхностно-активные свойства 1%-ных волных растворов одигомеров

	поверхностно-активные своиства 1%-ных водных растворов олигомеров				
					смачивания,
ца	Поверхностное			θ°	на
образца	натяжение, о,	Пенообразование,	Пеноустойчивость,		
00	мН/м	A ₀ , %	У	Полиамидная	Полиэфирная
Z				пленка	пленка
1	62.73	125	0.46	50	58
2	57.11	-	-	44	52
3	63.29	-	-	47	56
4	61.32	-	-	44	54
5	50.82	160	0.45	42	46
6	51.03	85	0.84	46	50
7	49.95	100	0.7	42	48
8	54.65	105	0.24	46	52
В	· · · · · · · · · · · · · · · · · · ·				
o	72.75			42	62
Д	12.13	-	=	4 2	02
a					

Полученные данные свидетельствуют о том, что олигомеры являются поверхностно-активными веществами, и снижение о для них 49–62 пределах MH/M. Была изучена зависимость поверхностного натяжения от молекулярной массы олигомеров; отмечена тенденция снижения о с увеличением молярной массы (табл. 4). Это подтверждает результаты [7], авторы которой получили \sqrt{n} пропорциональную зависимость полиметакриловой кислоты (ПМАК), где n – степень полимеризации от 500 до 8000.

Наибольшим пенообразованием характеризуется олигомер № 5 - 160%; пеноустойчивость лежит в пределах 0.24-0.84 и самой высокой является у образца № 6 (табл. 3).

Краевой угол смачивания для растворов олигомеров на полиамидной (гидрофобная поверхность) плёнке больше или равен углу смачивания воды; на полиэфирный плёнке (гидрофильная поверхность) образцы снижают угол смачивания воды на $4-16^{\circ}$. По результатам (табл. 6) были построены зависимости поверхностного натяжения водных растворов олигомеров от логарифма концентрации, определены критическая концентрация мицеллообразования (ККМ) и поверхностная активность. ККМ синтезированных олигомеров изменяется в пределах 1-5.6 г/л; поверхностная активность 0.35-3.88 (табл. 4). Наибольшей

поверхностной активностью обладает олигомер № 5, имеющий низкую молекулярную массу.

Таблица 4 ККМ и поверхностная активность синтезированных олигомеров

Title I i i i i i i i i i i i i i i i i i i				
№ образца	ККМ, г/л	$\frac{H \cdot M^2}{\kappa c} \cdot 10^{-3}$		
1	3.55	0.35		
2	2.51	1.69		
3	1.12	2.95		
4	2.51	1.3		
5	3.55	3.88		
6	1	1.75		
7	1.12	2.05		
8	5.6	1.29		

Экспериментальная часть

Синтез олигомера №1

В трёхгорлую колбу, снабженную мешалкой, термометром и капельной воронкой помещают 112.8 г додецилового спирта. При температуре 53–55 °С к додециловому спирту добавляют радикальный инициатор ДАК в количестве 0.246 г (0.2% от общего веса). Несколько минут производится перемешивание раствора, и затем по каплям в реакционную колбу приливают метакриловую кислоту в количестве 10.4 г, что соответствует молярному соотношению кислота:спирт 1:5.

После добавления всей кислоты капельная воронка заменяется холодильником И температуру реакционной поднимают до 90–95 °C. При 89–90 °C в колбе появляется белый осадок. По истечении 40 минут реакция заканчивается. Полученный продукт был отфильтрован, тщательно промыт серным эфиром и высушен в пистолете Фишера над P₂O₅ при температуре 56 °C. Полученный продукт представляет собой порошкообразное белое вещество. Выход продукта составляет 94% (от количества взятой реакцию метилакриловой кислоты). Условия синтеза всех олигомеров представлены в табл. 3.

Синтез олигомеров № 2, 4–8

В трёхгорлую колбу, снабженную мешалкой, термометром и капельной воронкой помещают $108.3\,\mathrm{r}$ толуола (растворитель) и $4.5\,\mathrm{r}$ додецилового спирта. Температуру поднимают до $55-60\,^{\circ}\mathrm{C}$. При этой температуре к реакционной массе добавляют $0.246\,\mathrm{r}$ радикального инициатора ДАК-динитрил-азо-бис-изомасляной кислоты (0.2% от общего веса). Несколько минут производится перемешивание раствора, и затем по каплям в реакционную колбу приливают метакриловую кислоту в количестве $10.6\,\mathrm{r}$. Это соответствует молярному

соотношению кислота:спирт 5:1. Капельная воронка заменяется обратным холодильником и температуру реакционной массы поднимают до 90–95 °C. При 89–90 °C в колбе появляется белый осадок, вязкость реакционной массы увеличивается. Реакция заканчивается через 40 минут. Полученный продукт отфильтровали, тщательно промывали серным эфиром на воронке Бюхнера и сушили в пистолете Фишера над пятиокисью фосфора при температуре 56 °C в течение 6 часов. Полученный продукт представляет собой порошкообразное белое вещество. Выход продукта составляет 93% (от количества взятой в реакцию МАК).

Синтез олигомера № 3

В трёхгорлую колбу, снабженную мешалкой, термометром и капельной воронкой загружают 112.6 г толуола (растворитель). Температуру поднимают до 53-55 °C и добавляют ДАК в количестве 0.246 г (0.2% от общего веса). Несколько минут производится перемешивание раствора, и затем по каплям в реакционную колбу приливают МАК в количестве 10.6 г. Капельная воронка заменяется холодильником и температуру реакционной обратным поднимают до 90–95 °C. При 90 °C в колбе появляется белый осадок. По истечении 50 минут реакция заканчивается. Полученный продукт отфильтровывают, тщательно промывают серным эфиром на воронке Бюхнера и сушат в пистолете Фишера над пятиокисью фосфора при температуре 56 °C в течение 6 часов. Полученный продукт представляет собой порошкообразное белое вещество. Выход продукта составляет 98% (от количества взятой в реакцию МАК).

Определение содержания основного вещества методом нейтрализации.

В сухую взвешенную колбу на 100 мл вливают 25–30 мл дистиллированной воды и взвешивают её на аналитических весах. Добавляют около 1 г испытуемого вещества и колбу снова взвешивают. Разность весов даёт навеску. Её титруют раствором щелочи в присутствии фенолфталеина. Содержание вещества х в процентах рассчитывают по формуле:

$$x = \frac{Y \times K \times Z}{a} \times 100\%,$$

где Y — количество 0.5 н. водного раствора щелочи, пошедшее на титрование, мл; K — поправочный коэффициент 0.5 н. водного раствора щелочи; a — навеска веществ, Γ ; Z — количество кислоты, соответствующее 1 мл 0.5 н. раствора щелочи, Γ для MAK = 0.043.

Выводы

1. Радикальной полимеризацией метакриловой кислоты в присутствии высших спиртов и их фракций в качестве телогенов синтезировано 8 образцов олигомеров метакриловой кислоты.

- 2. Установлены оптимальные параметры синтеза олигомеров: соотношение кислота:телоген 5:1, температура 90 °C. Выход олигомеров количественный.
- 3. Показано, что в оптимальных условиях синтеза образуются олигомеры со степенью полимеризации от 49 до 156. Теломеры в данных условиях не образуются.
- 4. Найдено, что синтезированные олигомеры являются поверхностно-активными веществами и снижают поверхностное натяжение воды в пределах 49–55 мН/м.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках проектной части Государственного задания в сфере научной деятельности (проект №4.1325.2014/К).

Список литературы

- 1. Абрамзон А.А. Поверхностно-активные вещества. Свойства и применение. Л.: Химия 1975. 162 с.
- 2. Букарь Н.В., Краснобаева С.Ю., Ильюшенко Е.В. // Журнал прикладной химии. 2008. Т. 81, № 2. С. 286
- 3. Комин А.В., Швецов О.К., Дуросова Е.Ю. // Известия вузов. Химия и химическая технология. 2008. Т. 51, № 4. С.48–49
- Швецов О.К. // Известия вузов. Химия и химическая технология. 2009. Т. 52. № 11. С. 95–98
- 5. Технические условия «Кислота метакриловая техническая» МРТУ 6-01-433-69
- 6. Энциклопедия полимеров М. 1977, Т. 3. С. 590–591
- 7. Katchalsky A., Millery., // Y. Phys. Coll. Chem. 1951, № 5, P. 1182

SYNTHESIS AND PROPERTIES OLIGOMERIC SURFACTANTS BASED ON METHACRYLIC ACID

L.I. Voronchihina, O.E. Zhuravlev, N.I. Krotova, Ya. A. Orlikova, E.V. Rybakov

Tver State University

By radical polymerization of methacrylic acid in the presence of higher alcohols and their fractions as telogens 8 samples synthesized methacrylic acid oligomers with degree of polymerization from 49 to 156. The resulting oligomers belong to the class of macromolecular surfactants.

Keywords: surface-active substances, oligomers, telogens polymerization

Об авторах:

ВОРОНЧИХИНА Людмила Ивановна – профессор, доктор химических наук, заведующая кафедрой органической химии химико-технологического факультета Тверского государственного университета, e-mail: katerina2410@mail.ru

ЖУРАВЛЕВ Олег Евгеньевич – доцент, кандидат химических наук, доцент кафедры органической химии химико-технологического факультета Тверского государственного университета, e-mail: pifchem@mail.ru

КРОТОВА Наталья Ивановна – студентка магистратуры кафедры органической химии химико-технологического факультета Тверского государственного университета.

ОРЛИКОВА Юлия Александровна – студентка магистратуры кафедры органической химии химико-технологического факультета Тверского государственного университета.

РЫБАКОВ Евгений Владимирович – студент магистратуры кафедры органической химии химико-технологического факультета Тверского государственного университета.