УДК 538.245 МИКРОСТРУКТУРА И ДОМЕННАЯ СТРУКТУРА БОРИДОВ ЖЕЛЕЗА И КОБАЛЬТА

С. С. Кабанов, М. Б. Ляхова, О. В. Жданова, Е.М. Семенова, Д. Ю. Карпенков, А. Ю. Карпенков

Тверской государственный университет

кафедра магнетизма

Получены крупнозернистые сплавы (Fe_{1-x}Co_x)₂B со столбчатой структурой. По форме зерна близки к призмам с квадратными или прямоугольными сечениями, размер зерен составляет 50...200 мкм. Вторичные фазы наблюдались только на границах зерен, их объем не превышал 5 %. Показано, что конфигурация доменной структуры образцов $(Fe_{1-x}Co_x)_2B$ соответствует различным типам анизотропии магнитокристаллической (MKA). Сплав Fe₂B характеризуется МКА типа «легкая плоскость», сплавы Fe_{1.8}Co_{0.2}B и FeCoB – МКА типа «легкая ось», в сплаве Fe_{1.84}Co_{0.16}В наблюдается состояние со спин-переориентационным переходом типа «легкая ось» -«легкая плоскость».

Ключевые слова: магнитокристаллическая анизотропия, спинпереориентационный переход, доменная структура

1. Введение. Современные магнитные материалы находят широчайшее применение в различных областях техники. На основе сплавов редкоземельных металлов (P3M, R) с металлами группы железа разработан ряд современных магнитотвердых материалов, к их числу относятся SmCo₅, R-Zr-Co-Cu-Fe и Nd-Fe-B. Однако в последние годы промышленность многих стран испытывает трудности с поставками РЗМ. Основная добыча сырья для производства РЗМ ведется в Китае, который начал вводить ограничения на экспорт РЗМ, чтобы удовлетворить потребности национальной развивающейся промышленности. Нехватка сырья на рынке РЗМ приводит к значительному повышению цен на данную группу металлов. В связи с этим в настоящее время повышенный интерес исследователей вызывают сплавы, не содержащие РЗМ. Это связано с поиском новых химических соединений и их дальнейшим использованием в качестве недорогих магнитных материалов. К магнитным сплавам данного типа относятся бориды кобальта и железа. Кроме того, многие химические соединения на основе железа, кобальта и бора обладают особенностями магнитокристаллической анизотропии (МКА) и испытывают спин-

переориентационные переходы (СПП) в наиболее доступном для исследования интервале температур. Как бинарные системы Fe-B и Co-B, так и тройная система Fe-Co-B исследованы недостаточно полно. Известно, что в этих системах образуются химические соединения M_2B (M = Fe, Co), которые имеют тетрагональную кристаллическую решетку. Данных о магнитных свойствах и МКА этих соединений очень мало, а доменная структура (ДС) практически не исследована.

В работах [1–2] построена магнитная фазовая диаграмма для системы сплавов (Fe_{1-x}Co_x)₂B, на которой показаны концентрационные зависимости температуры Кюри T_C и обозначены температуры фазовых переходов. Показано, что в системе (Fe_{1-x}Co_x)₂B возможны два спинпереориентационных перехода. Для соединений (Fe_{1-x}Co_x)₂B с небольшим содержанием кобальта при изменении температуры реализуется СПП типа «легкая плоскость» – «легкая ось». Для соединений (Fe_{1-x}Co_x)₂B с содержанием кобальта 55...85 ат.% при температуре ~600 К реализуется СПП типа «легкая плоскость» – «легкая плоскость» – «легкий конус». В результате анализа известных данных о МКА соединений (Fe_{1-x}Co_x)₂B в данной работе в качестве объектов исследования были выбраны составы, представленные в Табл. 1.

Fe ₂ B	x = 0	МКА типа «легкая плоскость»
Fe _{1,84} Co _{0,16} B	<i>x</i> = 0,08	СПП типа «легкая ось»- «легкая
		плоскость»
Fe _{1,8} Co _{0,2} B	<i>x</i> = 0,1	МКА типа «легкая ось»
FeCoB	x = 0,5	МКА типа «легкая ось»

Таблица 1. Составы исследуемых образцов

2. Методика эксперимента. Для приготовления слитков выбирались исходные металлы максимально высокой чистоты. Сплавы получали методом высокочастотной индукционной плавки в установке «Донец-1» в тиглях из алунда в атмосфере особо чистого аргона. Масса полученных исходных слитков составляла 20...50 г. Для получения крупнозернистых слитков применялась следующая методика. Куски железа, кобальта и порошок бора помещались в тигель и нагревались в индукционной печи до температуры ~1700°С. При этой температуре железо и кобальт полностью расплавлялись, так как точка плавления железа равна 1539°С, а кобальта – 1495°С. Бор, имеющий более

высокую точку плавления – 2030 °C, просто растворялся в жидком металле. Охлаждение слитка расплава от температуры нагрева до реальной температуры кристаллизации, то есть в интервале приблизительно 1700...1500°С проводилось достаточно медленно со средней скоростью ~5...10°C/с. Термические обработки сплавов проводились в трубчатой трехзонной печи TZF 15/610, оснащенной восьмисегментным температурным программатором и вакуумной системой CDK 180 + M3T(Великобритания, Carbolite). Перед термическими обработками небольшие части слитка массой 5-10 г помещались в кварцевую трубку, которая сначала откачивалась до вакуума, а затем герметически запаивалась. высокого После термической обработки для извлечения образца запаянная кварцевая ампула разрушалась.

Микроструктура и доменная структура исследовалась на металлографическом микроскопе Neophot-30. Шлифы готовились вручную на стеклянных пластинах с применением алмазных паст с размерами частиц абразива от 10 до 3 мкм, полировка осуществлялась на пастах крупностью 2...0,5 мкм на фильтровальной бумаге. После каждой смены пасты проводилась ультразвуковая очистка образцов в этиловом спирте. Микроструктура образцов выявлялась методом электрохимического травления в насыщенном растворе хромового ангидрида (CrO₃) в ортофосфорной кислоте (H₃PO₄) [3]. Доменная структура образцов исследовалась методами полярного эффекта Керра и порошковых осадков. В методе Акулова-Биттера использовался магнитный коллоид на основе керосина. Поскольку керосиновая суспензия практически не высыхает, это давало возможность наблюдать движение доменных границ образца в поле постоянного магнита, который подносился близко к образцу. Определение объемного содержания фаз в сплавах проводилось методом узловых точек (методом А.А. Глаголева) [4].

Результаты обсуждение. 3. И ИХ Для проведения металлографических исследований структуры сплавов (Fe_{1-x}Co_x)₂B приготовлены шлифы были на произвольно ориентированных плоскостях поликристаллических слитков. Для шлифовки и полировки использовались алмазные пасты с различной крупностью абразива. Однако даже после механической полировки на пасте с размером алмазного порошка менее 0,5 мкм на поверхности шлифа оставались

мелкие царапины. Этот эффект связан с невысокой твердостью исследованных сплавов, содержащих кобальт и железо. Для устранения дефектов шлифовки и напряженного поверхностного слоя шлифы подвергались электрохимической обработке. Картины микроструктуры сплавов (Fe_{1-x}Co_x)₂B приведены на рис. 1.

Рис. 1. Микроструктура сплавов (Fe_{1-x}Co_x)₂B

Видно, что все исследованные сплавы находятся в практически однофазном состоянии. Вторичные фазы наблюдаются только на границах зерен. Оценка методом стереометрической металлографии показала, что объем вторичных фаз во всех сплавах не превышает 5 об.%. Проведение термического магнитного анализа подтвердило однофазное состояние исследованных сплавов, на температурных зависимостях восприимчивости в интервале температур 20–500°С пиков не обнаружено. Как видно из рис. 1, в процессе медленного охлаждения слитка от температуры плавления получены крупнозернистые сплавы,

средний размер зерен исследованных сплавов (Fe_{1-x}Co_x)₂B составляет 50...200 мкм. Важно отметить, что сечения многих зерен имеют правильную форму квадратов ИЛИ прямоугольников. Можно предположить, что сплавы имеют столбчатую структуру, а форма столбчатых зерен близка к призмам с квадратным или прямоугольным основанием. Проведение рекристаллизационных термических обработок с целью дальнейшего увеличения размеров зерен сплавов на настоящем этапе работы успехом не увенчались.

Рис. 2. Доменная структура сплавов (Fe_{1-x}Co_x)₂B

Для выявления доменной структуры образцов (Fe_{1-x}Co_x)₂B в основном применялся метод порошковых осадков (рис. 2), в некоторых случаях удалось получить изображение доменов методом полярного эффекта Керра.Конфигурации доменной структуры образцов Fe_{1.8}Co_{0.2}B (x = 0,1) и FeCoB (x = 0,5) типичны для соединений с МКА типа «легкая ось» [5, 6]. На поверхностях зерен, параллельных оси *с* кристаллической структуры, наблюдаются полосовые домены, на базисных плоскостях зерен – домены в виде «звездочек», при промежуточной ориентации поверхности зерен – «каплевидные» домены (рис. 2). В поликристалле Fe_2B (*x* = 0) выявлены конфигурации доменной структуры, характерные для соединений с МКА типа «легкая плоскость» [7]. При различной ориентации поверхности зерен наблюдаются как основные полосовые домены, так и сложные картины модулированных структур. Наиболее интересным объектом исследования оказался сплав Fe_{1.84}Co_{0.16}B с концентрацией кобальта 8 ат.%, в котором при комнатной температуре наблюдается состояние, близкое к СПП «легкая ось» - «легкая плоскость». На картинах порошковых осадков хорошо видно, что процесс СПП начинается с границ зерен. Вблизи границ зерен при комнатной температуре наблюдаются домены в виде «звездочек», типичные для МКА «легкая плоскость», а основной объем зерен практически свободен от магнитной суспензии. Нагрев образца до температур ~50°С показал, что с увеличением температуры зоны с доменной структурой «звездочек» постепенно расширяются к центру зерен.

4. Заключение. Получены крупнозернистые сплавы $(Fe_{1-x}Co_x)_2B$ со столбчатой структурой. По форме зерна близки к призмам с квадратными или прямоугольными сечениями, размер зерен составляет 50...200 мкм. Вторичные фазы наблюдаются только на границах зерен, их объем не превышает 5 об. %. Показано, что конфигурация доменной структуры образцов ($Fe_{1-x}Co_x)_2$. В соответствует различным типам МКА: сплав Fe_2B характеризуется МКА типа «легкая плоскость», сплавы $Fe_{1,8}Co_{0,2}B$ и FeCoB – МКА типа «легкая ось», – сплав $Fe_{1,84}Co_{0,16}B$ – СПП «легкая ось» – «легкая плоскость».

Список литературы

- Cadeville M.C., Vincze I. Nuclear magnetic resonance of ⁵⁹Co in Fe_xCo_x)₂B ferromagnetic borides // J. Phys. F. 1975. V. 5. Number 4. P.790-799.
- Takacs L., Cadeville M.C, Vincze I. Mossbauer study of the intermetallic compounds (Fe_{1-x}Co_x)₂B and (Fe_{1-x}Co_x)B // J. Phys. F. 1975. V. 5. Number 4. P.800-811.
- Пшеничнов Ю.П. Выявление тонкой структуры кристаллов. М., 1974. –71 С.
- Салтыков С.А. Стереометрическая металлография // М.: Металлургия. 1970. 375 С.
- Киттель Ч. Физическая теория ферромагнитных областей самопроизвольной намагниченности. В сб.: Физика ферромагнитных областей. М.: ИЛ, 1951. С.19-116.
- Hubert A., Schafer R. Magnetic Domains. The Analysis of Magnetic Microstructures // Springer. 1998.
- Ляхова М. Б., Семенова Е. М., Скоков К.П. и др. Доменная структура монокристаллов R₂M₁₇ (M = Fe, Co) с магнитокристаллической анизотропией типа «легкая плоскость» // Горный информационноаналитический бюллетень. Москва, МГГУ. 2007. С.404-413.

MICROSTRUCTURE AND DOMAIN STRUCTURE OF IRON AND COBALT BORIDES

S. S. Kabanov, M. B. Lyakhova, O. V. Zhdanova, E. M. Semyonova, D. Yu. Karpenkov, A. Yu. Karpenkov

Tver State Univerity, 170100 Tver Chair of Magnetism

Coarse-grained ($Fe_{1-x}Co_x$)₂B alloys with columnar structure were synthesized by melting. The obtained crystallite shapes were of nearly prismatic form with nearly square or rectangular cross-sections. The grain size was of the order of 50...200 µm. The secondary phases of total volume not exceeding 5 % was observed only at the grain boundaries. It is shown that the domain structure configurations of ($Fe_{1-x}Co_x$)₂B samples correspond to different types of magnetocrystalline anisotropy (MCA). The Fe₂B alloys are characterized by the MCA of the easy plane type, $Fe_{1,8}Co_{0,2}B$ and FeCoB – by the easy axis MCA type, while a spin orientation transition from the easy axis to easy plane MCA type is observed in $Fe_{1,84}Co_{0,16}B$.

Keywords: magnetocrystalline anisotropy, spin-reorientation transitions, domain structure

Об авторах:

КАБАНОВ Сергей Сергеевич – магистрант физико-технического факультета Тверского государственного университета (ТвГУ); *e-mail:* <u>s.s.kabanov@gmail.com</u>;

ЛЯХОВА Марина Борисовна – канд. физ.-мат. наук, доцент кафедры магнетизма ТвГУ; *e-mail:* Lahova M B@mail.ru;

ЖДАНОВА Ольга Викторовна – канд. физ.-мат. наук, ассистент кафедры магнетизма ТвГУ; *e-mail:* <u>zhdanovaov2009@rambler.ru</u>;

СЕМЕНОВА Елена Михайловна – канд. физ.-мат. наук, доцент кафедры магнетизма ТвГУ; *e-mail*: <u>Semenova E_M@mail.ru</u>;

КАРПЕНКОВ Дмитрий Юрьевич – канд. физ.-мат. наук, ведущий инженер кафедры магнетизма ТвГУ; *e-mail*: <u>Karpenkov_D_Y@mail.ru</u>;

КАРПЕНКОВ Алексей Юрьевич – канд. физ.-мат. наук, ведущий инженер кафедры магнетизма ТвГУ; *e-mail*: <u>Karpenkov_Alex@mail.ru</u>.