УДК 537.226.4 ДИСПЕРСИЯ ДИЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК КОМПОЗИТОВ НА ОСНОВЕ ПЛЕНОК P(VDF-TRFE) С ВКЛЮЧЕНИЯМИ СЕГНЕТОЭЛЕКТРИЧЕСКОЙ КЕРАМИКИ И ЖЕЛЕЗА

Г.К. Шмелев, А.А. Богомолов, А.В. Солнышкин, И.М. Морсаков Тверской государственный университет, Тверь, Россия

Исследованы диэлектрические свойства композиционных полимерных пленок на основе сополимера поливинилиденфторидаполитрифторэтилена (P(VDF-TrFE)) с включениями керамических сегнетоэлектриков цирконата титаната бария свинца (ЦТБС), цирконата титаната свинца (ЦТС) и железа (Fe). Введение в полимерную матрицу включений керамики увеличивает диэлектрическую проницаемость (є) композита, тогда как наличие частиц железа ее уменьшает. Получена зависимость величины є от объемного содержания керамического наполнителя и выполнен ее анализ на основе модели Пуна-Шина. *Ключевые слова: диэлектрическая дисперсия, сополимер P(VDF-TrFE), композит, сегнетоэлектрическая керамика*

1. Введение. Полярные материалы, обладающие пьезоэлектрическими, пироэлектрическими и сегнетоэлектрическими свойствами, широко используются в качестве функциональных элементов различных электротехнических устройств в современной электронике. Поэтому в последнее время наиболее актуальным является направление по получению материалов, обладающих свойствами полимеров и классических сегнетоэлектриков. Такими объектами являются композиционные пленки на основе полимерных материалов с добавлением сегнетоэлектриков, например титаната-цирконата бариясвинца (ЦТБС).

Целью настоящей работы являлось исследование диэлектрических характеристик пленок сополимера P(VDF-TrFE) и композитных пленок на его основе с различным процентным содержанием керамических сегнетоэлектриков ЦТБС-3, ЦТС-19 и включений железа, а также изучение структуры поверхности образцов методами атомной и магнитной силовой микроскопии.

2. Методика. Для приготовления пленочных образцов сополимера P(VDF-TrFE) использован метод кристаллизации из раствора. Получены пленочные образцы сополимера P(VDF-TrFE) с 30% содержанием трифторэтилена, толщины которых варьировалась в пределах (10 ÷ 20) мкм. Степень кристалличности пленок, определенная методом ИК-спектроскопии поглощения, составляла 40 – 50 %. Тот же самый метод изготовления был использован для создания композитных

Вестник ТвГУ. Серия "Физика". 2014. № 2

полимерных пленок, содержащих керамические включения. Полученные композитные образцы содержали от 10 до 50 объемных процентов вышеуказанных кристаллических сегнетоэлектриков. Их толщина варьировалась в пределах (20÷100) мкм в зависимости от процентного содержания наполнителя. Исследования поверхности изучаемых образцов проводились с помощью атомного силового микроскопа Solver P47-SPM-MDT(NT-MDT).

Для исследования дисперсионных зависимостей диэлектрических характеристик в частотном интервале (10³ ÷ 10⁶) Гц использован метод, основанный на измерениях (с помощью фазочувствительных приборов) действительной и мнимой частей полного переменного тока, проходящего через исследуемый объект.

3. Результаты и их обсуждение. Исследования, проведенные атомной силовой микроскопии методом (ACM), показали существование в образцах композита двух структур, которые на топографическом изображении поверхности (рис. 1, а) имеют разный контраст. Темная область на полученном изображении относится к аморфному состоянию сополимера. Данная аморфная структура принадлежит неполярной α-фазе с хаотичным расположением полимерных цепочек. На АСМ изображении поверхности исследуемых пленок (рис. 1, а) хорошо различимы светлые области, которые соответствуют кристаллической фракции сополимера [2,3]. Кристаллическая структура представляет собой ламелярные кристаллы, относящиеся к полярной в-фазе. Наличие кристаллической фракции обусловливает существование сополимера сегнетоэлектрических свойств.

Методом магнитной силовой микроскопии (МСМ) выполнены исследования композита P(VDF-TrFE)+20%(ЦТС-19+Fe) для регистрации включений железа. С использованием магнитного кантилевера получено изображение поверхности с учетом фазы (рис. 1, б). Отчетливо видны магнитные включения, размер которых составляет ~50 нм.

По вышеописанной методике проведены исследования диэлектрических характеристик композита P(VDF-TrFE) с микровключениями керамического сегнетоэлектрика ЦТС-19 и железа, а также образцов с различным процентным содержанием керамики ЦТБС-3. Частотные зависимости диэлектрической проницаемости представлены на рис.2.

Р и с. 1. Топографическое изображение поверхности пленки P(VDF-TrFE) +20%(ЦТС-19+Fe), полученное методами: (а) – АСМ (2х2 мкм), (б) – МСМ с учетом магнитной фазы (1х1 мкм)

Р и с. 2. Частотные зависимости вещественных компонент (ϵ') диэлектрической проницаемости композитов: а – P(VDF-TrFE) - кривая 1, P(VDF-TrFE)+20% (ЦТС-19+Fe) - кривая 2 и P(VDF-TrFE)+20% ЦТС-19 кривая 3; б – с различным процентным содержанием керамики ЦТБС-3: кривая 1 - 0%, 2 - 10, 3 - 20, 4 - 30, 5 - 40, 6 - 50

Как видно из рис. 2 а, для образца P(VDF-TrFE), не содержащего включений, величина вещественной компоненты диэлектрической проницаемости практически не зависит от частоты переменного электрического поля в интервале от 2 кГц до 1 МГц и составляет

примерно $\varepsilon = 12$. Введение в образец P(VDF-TrFE) включений керамики ЦТС-19, составляющих 20% объема композита P(VDF-TrFE), оказывает значительное влияние на величины действительной и мнимой компонент диэлектрической проницаемости – они возрастают в исследуемом диапазоне частот приблизительно в 3 раза. Образец, содержавший включения керамики ЦТС-19 и одновременно железа, промежуточное показывает значение между величинами диэлектрической проницаемости для чистого образца и содержащего включения одной керамики ЦТС-19. Таким образом, можно сделать вывод о том, что включения железа частично компенсируют увеличение диэлектрической проницаемости при введении керамики. Необходимо также отметить, что в образцах P(VDF-TrFE)+20% ЦТС-19 и P(VDF-TrFE)+20% (ЦТС-19+Fe), в отличие от пленок P(VDF-TrFE) без включений, появляется наклон частотной зависимости диэлектрической проницаемости.

Частотные зависимости диэлектрической проницаемости образцов, содержащих включения сегнетоэлектрической керамики ЦТБС-3 представлены на рис. 2 б. Как и в предыдущем случае, наличие керамического наполнителя приводит к увеличению ε . Причем с ростом процентного содержания керамики ЦТБС-3 в композите значение ε увеличивается. Также можно отметить дисперсии диэлектрических характеристик в области частот ($10^4 \div 10^6$) Гц.

Согласно модели Пуна-Шина [1] рассчитана зависимость вещественной компоненты диэлектрической проницаемости от процентного содержания входящей в композит P(VDF-TrFE) керамики ЦТБС:

$$\frac{\varepsilon}{\varepsilon_m} = 1 + \frac{\phi\left(\frac{\varepsilon_i}{\varepsilon_m} - 1\right)}{\phi + \frac{1}{3}\left(1 - \phi\right)\left[\frac{\varepsilon_i}{\varepsilon_m}\left(1 - \phi\right) + \phi + 2\right]},$$
(1)

где ε_m – диэлектрическая проницаемость матрицы ($\varepsilon_m = 12$), ε_i – диэлектрическая проницаемость включений (для ЦТБС $\varepsilon_i = 2050$), ε - диэлектрическая проницаемость композита, ϕ - объемная фракция керамики (от 0 до 0,5).

Для сравнения теоретически рассчитанной и экспериментально полученной зависимостей диэлектрической проницаемости от процентного содержания ф входящей в композит P(VDF-TrFE) керамики ЦТБС построены соотверствующие графику (рис. 3). Как видно из представленных результатов, согласие с теорией [1] наблюдается лишь для малых концентраций керамики ЦТБС (до 20%). При бо́льших концентрациях керамики ЦТБС возникает отклонение теоретически рассчитанной и экспериментально полученной зависимостей, которое при максимальной концентрации включений достигает двух раз.

Р и с. 3. Концентрационные зависимости вещественных компонент диэлектрических проницаемостей (ε'), полученных экспериментально для композита P(VDF-TrFE)+ЦТБС-3 (экспериментальные точки 1) и рассчитанных по формуле (1) (кривая 2). Частота измерительного поля 2 кГц. φ – объемный процент керамики (от 0 до 50 %)

4. Заключение. В ходе проведенных исследований установлено, что присутствие сегнетоэлектрической керамики в полимерной матрице P(VDF-TrFE) оказывает значительное влияние на диэлектрические свойства композита, а именно, увеличение содержания керамического наполнителя приводит к росту є. Наличие включений железа в системе Р(VDF-TrFE)+ЦТС-19 вызывает ee уменьшение. В результате сравнительного обнаружено анализа показано расхождение рассчитанной теоретически по формуле (1)зависимости диэлектрической проницаемости и экспериментально наблюдаемой. Это имеет место при концентрациях керамики ЦТБС-3 в композите P(VDF-TrFE)+ЦТБС-3 от 30 до 50 %. Для надежной интерпретации экспериментальных данных необходимо построение корректных схем расчетов эффективных констант композитов, что также может служить основой целенаправленного поиска новых материалов с наперед заданными свойствами [4].

Список литературы

- Poon Y. M., Shin F. G. A simple explicit formula for the effective dielectric constant of binary 0-3 composites // J. Mat. Sci. 2004. V.39. P.1277.
- 2. El Hami1 K., Yamada H. Matsushige K. Nanoscopic measurements of the electrostriction responses in P(VDF/TrFE) ultra-thin-film copolymer using atomic force microscopy // Appl. Phys. A. 2001. V.72. P.347.
- Park Y.J., Kang S.J., Parka C., Kim K.J., Lee H.S., Lee M.S. U-In Chung, Park I.J. Irreversible extinction of ferroelectric polarization in P(VDF-TrFE) thin films upon melting and recrystallization // Appl. Phys. Lett. 2006. V.88. 242908.
- 4. Чернобабов А. И. Физические свойства гетерогенных сегнетоэлектрических систем: Автореф. дис. ... д-ра физ.-мат. наук. Ростов-на-Дону., 2008.

DIELECTRIC DISPERSION IN COMPOSITES ON THE BASE OF COPOLYMER P(VDF-TRFE) FILMS COMPRISING FERROELECTRIC CERAMICS AND FE INCLUSIONS ©

G.K. Shmelev, A.A. Bogomolov, A.V. Solnyshkin, I.M. Morsakov Tver State University, Tver,

Dielectric properties of composite films on the base of copolymer P(VDF-TrFE) films comprising inclusions of ferroelectric ceramics zirconate titanate barium lead (BPZT), zirconate titanate lead (PZT) and iron were studied. Introducing the ceramics inclusions increase dielectric permittivity (ϵ) of the composite, at the same time Fe inclusions decrease value of ϵ in P(VDF-TrFE)+20%PZT+Fe composite. It was found a dependence of dielectric constant on volume fraction of ceramics filler and carried out its analysis on the base of Poon – Shin model.

Keywords: dielectric dispersion, copolymer P(VDF-TrFE), composite, ferroelectric ceramics

Об авторах:

СОЛНЫШКИН Александр Валентинович - профессор физикотехнического факультета ТвГУ, г.Тверь.

БОГОМОЛОВ Алексей Алексеевич – профессор физикотехнического факультета ТвГУ, г.Тверь.

ШМЕЛЕВ Григорий Константинович – магистр физикотехнического факультета ТвГУ, г.Тверь.

МОРСАКОВ Иван Михайлович - инженер физико-технического факультета ТвГУ, г.Тверь.