УДК 574:556.53(470.331)

ЭКОЛОГО-ЭКОНОМИЧЕСКАЯ ОЦЕНКА СОСТОЯНИЯ ОЗЕРА СЕЛИГЕР

А.А. Цыганов

Тверской государственный университет, г. Тверь

Дана стоимостная оценка экологического ущерба поверхностным водным объектам от сбросов сточных вод в Осташковский плёс озера Селигер.

Ключевые слова: плата за загрязнение, экологический ущерб.

Система озер Селигера образует единый озёрно-болотно-речной район, собственно речной бассейн реки Селижаровки. Селигер имеет сложное смешанное происхождение, котловина озера имеет небольшие тектонические разломы. Озеро образовалось около 20 тыс. лет назад, когда древние доледниковые речные долины были запружены водами таявшего ледника. Форма озера очень необычна и причудлива с многочисленными островами, бухтами, песчаными пляжами.

Система озера Селигер *по Д.Н. Анучину*² состоит из 17 плёсов (заливов, проливов, проток) и 7 озёрных групп из 16-ти озёр (табл. 1) [1, 2]. Плёсы и озёра соединены между собой протоками и реками. Общая площадь -259,7 км² (акватории -221,6 км², островов -38,1 км²).

При отметке уровня 204,7 м а. о. максимальная глубина системы 24,0 м, средняя – 5,8 м (по Анучину 4,9 м), объём воды – 1 285,3 млн м³, длина –72 км, максимальная ширина – 40 км, средняя ширина –3,08 км, длина береговой линии - 528 км, площадь бассейна – 2 275 км².

Глубина озера различна: мелкие плёсы — 3—4 м, глубокие — 18—24 м. Наиболее крупные плёсы Селигера — Осташковский, Полновский, Берёзовский, Волоховщинский, Кравотынский, Сосницкий, Весецкий, Селижаровский. Есть плёсы поменьше — Троицкий, Крестецкий, а также Елецкий плёс или пролив. Озёрами, входящими в состав Селигера по Анучину, считаются озёра за селом Дубовом — Святое, Долгое, Черное, восточные озёра — Серемо, Глубокое, Берёзовское, Хресное у села Заплавья, Собенские озёра у деревни Берёзовский Рядок, Сватица и Стройное за деревней Светлица, Белое (южное) на острове Хачин, Величко у села Ботова, Ракитно в южной части Селижаровского плёса (табл. 1).

Данная работа посвящена оценке современного экологического состояния Селигера и его аквальных комплексов. Полевые исследования автором проводились в июле-октябре 2011 г.

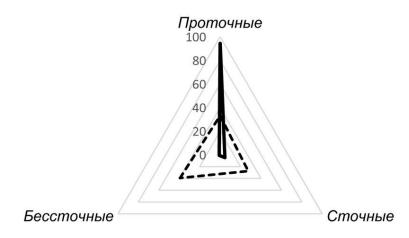

_

² Исследования заслуженного профессора Московского университета Дми́трия Никола́евича Ану́чина (1897). См. в статье [14].

Селигерский гидрографический подрайон является восточной половиной **Верхневолжско-Селигерского ландшафтно-лимнологического района**, который расположен на северо-западе Тверской области и захватывает территорию Валдайской природной провинции [10-19].

Район находится в пределах области Валдайского и Московского оледенений и характеризуется повсеместным развитием молодого ледниково-аккумулятивного и эрозийного рельефа с частой сменой высот поверхности и значительным расчленением, очень пёстрым составом почвообразующих пород.

Всего в бассейне р. Селижаровки, куда входит и система озер Селигера, насчитывается более 500 озёр, из них 209 озёр с площадью более 1 га (табл. 2.). В общей площади озёр (294,2 км²) доминируют проточные озера — 94,2% (треть всего количества озер) (рис. 1). В озёрной сети Селигера больше всего бессточных маленьких озер — 43,1% (4,14% площади всех озер). Сточные озера занимают менее 5% площади (четверть всех озер).


доля в общей площади озердоля в озерной сети

Р и с. 1. Структура системы оз. Селигер по сточности: удельный вес разных типов озер в общей площади и количестве

Таблица1 Структура системы озера Селигер *по Д.Н. Анучину* (17 плёсов и 7 озёрных групп Селигера)

		Пло-	Дли-	Шири	на, км	Глуби	ина, м		Длина
No		щадь,	на,	мак-		мак-		Урез	берего-
745	Название плёса, озера	щадь, км ²	на, КМ	си-	сред-	си-	сред-	воды,	вой
		KM	KM	маль	пян	маль	пян	M	линии,
				ная		ная			KM
1	Полновский	25,76	17,40	4,40	2,98	21,5	9,00	206,5	56,53
2	Сосницкий	16,25	8,51	4,20	1,91	12,2	8,00	205,5	33,8
3	Полоновка	0,57	2,50	0,61	0,23	4,5	2,10	205,4	4,91
4	Протока Полоновка	0,35	2,51	0,21	0,14	3,5	2,00	205,1	4,41
5	Берёзовский	25,8	13,9	3,70	1,86	17,2	7,00	205,0	79,3
6	Елецкий	2,10	4,20	1,10	0,5	9,5	5,00	205,0	54,7
7	Троицкий	4,32	4,90	3,90	0,88	9,5	6,00	205,0	12,35
8	Непри	1,99	5,90	1,00	0,337	9,5	6,00	205,0	16,51
9	Волоховщинский	8,76	11,90	2,40	0,737	14,3	7,00	205,0	17,4
10	Владышно	3,05	6,00	1,50	0,508	8,6	4,10	205,0	11,61
11	Кравотынский	16,77	9,20	3,20	1,823	21,5	9,00	205,0	55,2
12	Крестецкий	5,09	5,10	2,20	0,998	5,6	4,00	205,0	12,1
13	Слободской	23,12	9,10	2,70	2,54	20,8	10,0	205,0	32,41
14	Осташковский	58,40	19,20	7,10	3,04	24,0	8,50	204,9	108,4
15	Селижаровский	0,625	3,51	1,25	0,178	5,0	2,00	204,7	10,0
16	Рогожский	4,3757	7,85	1,40	0,557	4,5	1,90	204,6	38,3
17	Нижнекотицкий	2,80	4,00	2,00	0,7	3,0	1,50	204,5	15,81
	Итого, плёсы	200,1307							563,74
1	4 озера р. Собенка	0,5731							
2	3 озера р. Дубовой	1,02							
3	Хресное	1,45	2,36	1,20	0,614	5,1	2,40	206	6,81
4	4 озера р. Княжа	7,473							
5	Белое южное Хачин	0,25	0,99	0,60	0,25	8,4	4,0	206	1,9
6	Святица и Стройно	0,249				-			
7	Ракитно	0,24	1,10	0,35	0,218	1,8	1,2	205	2,61
	Итого, озёрные группы	11,2551							
	Bcero	211,3858							

Озёр с акваторией более 1 га (вместе с островами) в бассейне системы Селигера насчитывается 196, их общая площадь 293,32 км 2 . Проточные составляют 33,16% озёрной сети (94,45% всей площади озёр), сточные – 27,55% (4,69%), бессточные – 39,29% (0,86%) (рис. 2).

______ доля в общей площади озер ____ доля в озерной сети

Р и с. 2. Структура озёр с акваторией более 1 га (вместе с островами) в бассейне системы Селигера (по сточности), %

Собственно, 17 плёсов и 16 озёр, всего 33 водоёма составляют $211,38 \text{ км}^2$ (табл. 1).

Крупнейшие озёра (площадь более 10 км²) занимают площадь 194,23 км², что составляет 66,88% акваторий системы Селигера (табл. 2). Таких озёр всего 7 (3,57% от общей численности озёр). По форме плана крупнейшие озёра, удлинённые и овальные. Все они проточные.

Таблица2 Основные плесы оз. Селигер

Количе-Площадь, $\kappa m^2 / \%$ ство озёр/ Проточ-Nox Форма Озера в общей площа-% в озёрность ДИ ной сети Полновский плёс 25,76 3 УД П 19 Сосницкий плёс 16,25 УД П 46 Берёзовский плёс 25,8 УД П 23,12 138 Слободской плёс УД П 148 11,70 П Сабро УД 153 Осташковский плёс 58,40 OB П 185 Сиг 33,20 OB П 194,23/66,88 7/3,57 Итого Система Селигер 290,4012 196 Крупнейшие озёра 194,23 /66,03 7/3,36 294,1515 209 Всего

Примечание: № x – номер озера по карте, Π – проточные озера

Для оценки современного состояния качества воды использованы данные, полученные в ходе работы экспедиции кафедры физической географии и экологии ТвГУ (руководитель Цыганов А.А.) в июле 2011 г.

В отобранных пробах анализы воды проводились в соответствии с [7]. Биологическое потребление кислорода (БПК) определялось скляночным методом, нитриты — фотометрически с реактивом Грисса, нитраты — потенциометрически с ионоселективными элементами, аммонийный азот — фотометрически с реактивом Несслера, фосфор — фотометрически с молибдатом. Определение тяжёлых металлов проводилось в 2013 г. лабораторией ВНИИМЗ методом атомно-эмиссионной спектрометрии с индукционной плазмой. Качественный состав поверхностных вод показан в табл. 3.

Эколого-экономическая оценка загрязнения поверхностных вод озера Селигер.

Согласно [3,5], нормативная плата за загрязнение воды определяется по формуле 1.

ТаблицаЗ. Качество воды оз. Селигер, концентрация (С) в мг/л, ПДК^э, 29.07.2011 г., с учётом фона

			1		2			3	
Показатели	пдк ^э	КО	Сфон	Сфакт	С _{факт} -С _{фон}		Сфакт	С _{факт} - С _{фон}	с/пдк
O_2	4,00	(-	9,00	6,3	6,31	$0,95^{1}$	5,70	5,701	$2,11^{1}$
БПК5	2,01	(m)	1,43	4,34	2,912	$0,97^{2}$	4,92	$3,49^2$	$1,745^2$
N _{нитрат}	9,00	3	0,02	0,26	0,20	0,022	1,89	1,87	0,208
N _{нитрит}	0,02	2	0,002	0,040	0,038	1,900 ^x	0,050	0,048	2,400
N _{аммон}	0,40	4	0,007	4,75	4,743	11,858	1,96	1,953	4,883 ^x
Рфосф.	0,2	3	0,070	0,150	0,080	0,400	0,150	0,080	0,400
Сульфаты	100,00	4	0,100	4,700	4,600	0,046	4,300	4,200	0,042
Хлориды	300,00	4	1,100	8,70	7,600	0,025	13,300	12,200	0,041
НП	0,05	4	0,010	0,40	0,390	7,800 ^x	0,560	0,550	11,000 ^x
Железо	0,10	3	0,007	0,030	0,023	0,230	0,040	0,033	0,330
Марганец	0,01	3	0,002	0,002	0	0	0,0028	0,0008	0,080
Медь	0,001	3	0,002	0,0036	0,0016	1,600	0,0056	0,0036	3,600 ^x
Цинк	0,01	3	0,002	0,004	0,002	0,200	0,021	0,019	1,900
Бериллий	0,0002	1	0,00014	0,00015	0,00001	0,050	0,00015	0,00001	0,050
Стронций	0,40	2	0,00033	0,00054	0,00021	0,0005	0,00076	0,00043	0,001
Ванадий	0,001	3	0,00001	0,0004	0,00039	0,390	0,0005	0,00049	0,490
Кобальт	0,01	2	0,0002	0,0010	0,0008	0,080	0,0012	0,001	0,100
Хром	0,07	3	0,00008	0,0014	0,00132	0,019	0,0013	0,00122	0,017
Молибден	0,001	2	0,0004	0,0017	0,0013	1,300	0,0018	0.0014	1,400
Свинец	0,006	2	0,00016	0,023	0,02284	3,807 ^x	0,023	0,02284	3,807 ^x
Селен	0,0016	2	0,00012	0,0019	0,00178	1,113	0,0022	0,00208	1,300
Мышьяк	0,01	1	0,00019	0,0021	0,00191	0,191	0,0025	0,00231	0,231
Кадмий	0,005	2	0,00006	0,0016	0,00154	0,308	0,0017	0,00164	0,328
Калий	30,0	2	6,12	4,98	0	0	5,84	0	0
Кальций	30,0		26,3	28,3	2,000	0,067	38,3	12,000	0,400
Никель	0,01	2	0,0003	0,0031	0,0028	0,280	0,0032	0,0029	0,290
Фенолы	0,001	1 - 1	0	0,0009	0,0009	0,0009	0,0008	0,0008	0,800
СПАВ	0,5	10-1	0	0,100	0,100	0,100	0,080	0,080	0,160
ИЗВ ⁹ токс						6,7495			7,217
ИЗВ ³ 6						4,548			4,524
ИЗВ ^э полн				ИЗВ ³ 9		3,478	ИЗВ ³ 10		3,414

Примечание: в качестве экологического норматива берутся гигиенические нормативы.

Плёсы: 1 – Полновский, 2 – Городской, 3 – Осташковский

$$\Pi^{\text{H}}_{i} = P^{\text{H}}_{i} M^{\text{H}}_{i} K_{\text{B}} K_{\text{ин}},$$
 где (1)

где P^{H}_{i} — базовый норматив платы І-го вещества в 2003 г., руб/т (табл. 4);

 $M^{\mbox{\tiny H}}_{\mbox{\ i}}$ – предельно допустимый сброс (масса) і-го вещества, т определяется по формуле 2

$$M_{i}^{H} = C_{i}^{\Pi J C} V 10^{-3}, где$$
 (2)

Ниже приводится расчёт поступления ЗВ в оз. Селигер (табл. 4) по формуле 1

$$M_{i}^{H} = C_{i}^{\Pi \square C} V$$
, где (1)

 $C_i^{\Pi ДC}$ – концентрация для расчёта предельно допустимого сброса іго загрязняющего вещества. Берётся концентрация, равная фактической ($C_i^{\phi a \kappa r}$), если она не превышает предельно допустимую концентрацию ($\Pi Д K_i^{px}$) і-го загрязняющего вещества, в случае превышение фактической концентрации $\Pi Д K_i$, $C_i^{\Pi Д C} = C_i^{\Pi Д K}$ (табл. 4);

V – объём стока р. Селижаровка в 2011 г., 643 млн м³.

Концентрация биологического потребления кислорода за 20 суток (полная) БПК $_{20} = 1,43$ БПК $_{5} = 1,43$ х 4,92 = 7,036 мг/л.

Масса предельно допустимого сброса БПК₂₀ составит $M^{\Pi JC}_{\text{БПК20}} = 3,00 \text{ x } 643 \text{ млн } \text{м}^3 = 1929 \text{ т/год.}$

Масса предельно фактического сброса БПК $_{20}$ составит М $^{\phi a \kappa r}_{\rm БПК20} = 7,036 x 643$ млн м $^3 = 4524,148$ т/год.

Масса предельно сверхлимитного сброса БПК $_{20}$ составит $M^{\text{сл}}=M^{\text{факт}}_{\text{БПК20}}-M^{\text{ПДС}}_{\text{БПК20}}=4524,148-1929=2595,148$ т/год.

Концентрация биологического потребления кислорода за 20 суток (полная) $C^{\phi a \kappa \tau}_{\text{БПК20}} = 1,43 C^{\phi a \kappa \tau}_{\text{БПК5}} = 1,43 \ \text{x} \ 4,92 = 7,036$. Фоновая концентрация (Полновский плес) $C^{\phi o h}_{\text{БПК20}} = 1,43 \ \text{x} \ 1,43 = 2,045$. Фактическая концентрация с учетом фона $C^{\phi a \kappa \tau - \phi o h} = 7,036 - 2,045 = 4.991 \ \text{мг/л}$.

Масса фактическая с учётом фона БПК $_{20}$ составит М $^{\phi a \kappa \tau - \phi o H} = 4,991$ х 643 = 3209,213 т/год.

Масса предельно допустимого сброса БПК $_{20}$ составит М $^{\phi a \kappa r - \phi o H} = 3,00 x 643 = 3209,213 т/год.$

Масса сверхлимитного сброса БПК₂₀ составит $M^{cn} = 3209,213 -$

1929.0 = 1280.213 т/год.

Подобным образом проведён расчёт по всем ингредиентам.

Нормы качества воды водоёмов рыбохозяйственного назначение более жёсткие, чем гигиенические, поэтому они используются МПР России в качестве экологических. Концентрации ПДК $_{\rm px}$ для рыбохозяйственных водоёмов обычно устанавливаются ниже концентраций ПДК $_{\rm пит}$ для питьевых водоёмов в 2–10 раз (и более), так как учитывается возможность накопления ядовитых веществ в пищевых цепочках человека.

Таблица4 Масса фактическая, предельно допустимая и сверхлимитная сброса ЗВ в Осташковский плёс, ПДК_э, 29.07.2011 г.

Показатели	Сфакт	СПДС	Сфакт/пдк	$M^{\Pi JC}$	Мфакт	Мел
БПК20	7,036	3,00	2,345	1929	4524,148	2595,148
N _{нитрат}	1,89	1,89	0,210	1215,27	1215,27	(48)
N _{нитраит}	0,050	0,020	2,500	12,86	32,15	19,29
N _{аммон}	1,960	0,400	5,030 ^x	257,2	1260,28	1003,08
Рфосф.	0,150	0,150	0,750	96,45	96,45	-
Сульфаты	4,300	4,300	0,043	2764,9	2764,9	-
Хлориды	13,300	13,300	0,044	8359,0	8359,0	
НΠ	0,560	0,050	11,200 ^x	32,15	360,08	327,93
Железо	0,040	0,040	0,400	25,72	25,72	1,51
Марганец	0,0028	0,0028	0,280	1,8004	1,8004	-
Медь	0,0056	0,001	5,600 ^x	0,643	3,6008	2,9578
Цинк	0,021	0,01	2,100	6,43	13,503	7,073
Бериллий	0,00015	0,00015	0,750	0,0965	0,0965	1-1
Стронций	0,00076	0,00076	0,0019	0,4887	0,4887	(=)
Ванадий	0,0005	0,0005	0,500	0,3215	0,3215	-
Кобальт	0,0012	0,0012	0,120	0,7716	0,7716	7=0
Хром (Cr ³⁺)	0,0013	0,0013	0,019	0,8359	0,7716	720
Молибден	0,0018	0,001	1,800	0,643	1,1574	0,5144
Свинец	0,023	0,006	3,833 ^x	3,858	14,789	10,931
Селен	0,0022	0,0016	1,375	1,0288	1,4146	0,3858
Мышьяк	0,0025	0,0025	0,25	1,6075	1,6075	
Кадмий	0,0017	0,0017	0,340	1,0931	1,0931	-
Калий	5,84	5,84	0,195	3755,12	3755,12	1.72
Кальций	38,3	30,0	1,277	19290,0	24633,33	
Никель	0,0032	0,0032	0,320	2,0576	2,0576	:=:
Фенолы	0,0008	0,0008	0,800	0,5144	0,5144	1-9
СПАВ	0,080	0,080	0,160	51,44	51,44	

По нашему мнению, для экологических целей следует брать наиболее жёсткие нормы, например, ПДК^{рх} азота нитратного 9,0 мг/л, а ПДК^{пит} = 10,17 мгл, тогда в качестве ПДК^э берётся значение равное рыбохозяйственному нормативу — 9,0 мг/л. Но есть исключения, у беррилия, мышьяка, калия и кальция питьевые нормы более жёсткие, чем рыбохозяйстенные, поэтому их следует использовать в качестве экологических нормативов [17-19].

Экологическая оценка состояния поверхностных вод должна проводится по самым жёстким, т. е. экологическим нормативам, с учётом фонового загрязнения, что позволит наиболее точно оценить антропогенное воздействие (табл. 5).

Таблица 5 Масса фактическая, предельно допустимая и сверхлимитная сброса 3В в Осташковскоий плёс, ПДК₃, 29.07.2011 г. с учётом фона

Показатели	СПДКэ	Сфакт	Сфон	Сфакт-фон	СПДС	Мфакт-фон	МПДС	Мсл
БПК20	3,00	7,036	2,045	4,991	3,00	3209,213	1929,0	1280,213
N _{нитрат}	9,00	1,89	0,02	1,87	1,87	1202,41	1202,41	3.40
N _{нитрант}	0,02	0,050	0,002	0,048	0,02	30,864	12,86	18,004
N _{аммон}	0,40	1,960	0,007	1,953	0,40	1255,779	257,2	998,579
Рфосф.	0,2	0,150	0,070	0,080	0,080	51,44	51,44	-
Сульфаты	100,00	4,300	0,100	4,200	4,200	2700,6	2700,6	-
Хлориды	300,00	13,300	1,100	12,200	12,200	7844,6	7844,6	-
НΠ	0,05	0,560	0,010	0,550	0,550	353,65	353,65	-
Железо	0,10	0,040	0,007	0,033	0,033	21,219	21,219	-
Марганец	0,01	0,0028	0,002	0,0008	0,0008	0,5144	0,5144	-
Медь	0,001	0,0056	0,002	0,0036	0,001	2,3148	0,643	1,6718
Цинк	0,01	0,021	0,002	0,019	0,010	12,217	6,43	5,787
Бериллий	0,0002	0,00015	0,00014	0,00001	0,00001	0,00643	0,00643	-
Стронций	0,40	0,00076	0,00033	0,00043	0,00043	0,27649	0,27649	_
Ванадий	0,001	0,0005	0,00001	0,00049	0,00049	0,31507	0,31507	-
Кобальт	0,01	0,0012	0,0002	0,0010	0,0010	0,643	0,643	
Хром	0,07	0,0013	0,00008	0,00122	0,00122	0,78446	0,78446	-
Молибден	0,001	0,0018	0,0004	0,0014	0,0010	0,9002	0,643	0,2572
Свинец	0,006	0,023	0,00016	0,02284	0,0060	14,68612	3,858	10,82812
Селен	0,0016	0,0022	0,00012	0,00208	0,0016	1,33744	1,0288	0,30864
Мышьяк	0,01	0,0025	0,00019	0,00231	0,00231	1,48533	1,48533	(= 0
Кадмий	0,005	0,0017	0,00006	0,00164	0,00164	1,05452	1,05452	-
Калий	30,0	5,84	6,12	0	5,84	3755,12	3755,12	-
Кальций	30,0	38,3	26,3	12,000	12,000	7716,0	7716,0	-
Никель	0,01	0,0032	0,0003	0,0029	0,0029	1,8647	1,8647	-
Фенолы	0,001	0,0008	0	0,0008	0,0008	0,5144	0,5144	-
СПАВ	0,5	0,080	0	0,080	0,080	51,44	51,44	-

Согласно [3,5] нормативная плата за загрязнение воды определяется по формуле 2

$$\Pi^{\text{H}}_{i} = P^{\text{H}}_{i} M^{\text{H}}_{i} K_{\text{B}} K_{\text{ин}},$$
 где (2)

 $P^{\text{H}}i$ – базовый норматив платы І-го вещества в 2003 г., руб./т (табл. 7);

 $M^{\mbox{\tiny H}}i$ — предельно допустимый сброс (масса) і-го вещества, т, определяется по формуле 1.

Таблицаб. Коэффициент экологической значимости водных объектов (Методика исчисления размера вреда..., 2009», $K_{\text{в}}$

№	Наименование водных объектов (бассейны рек, озер и морей)	Кв
1	Нева	1,51
2	Неман	1,21
3	Реки бассейнов Ладожского, Онежского, Ильмень и указанные озёра	2,10
4	Прочие реки бассейна Балтийского моря	1,18
9	Волга	1,41
21	Прочие реки Карского моря	1,23
30	Озёра	1,80

 $K_{\text{в}}$ — коэффициент экологической значимости водного объекта (табл. 6). озера, $K_{\text{в}}$ = 1,8;

 $K_{\text{ин}}$ — коэффициент индексации, учитывающий инфляционную составляющую экономического развития, 2003 г. — 1, 2004 г. — 1,1, 2005 г. — 1,2, 2006 г. — 1,3, 2007 г. — 1,4, 2008 г. — 1,48, 2009 г. — 1,62, 2010 г. — 1,79, 2011 г. — 1,93, 2012 г. — 2,05, 2013 г. — 2,10, 2014 г. — 2,33, 2015 г. — 2,45, принимается в 2011 г. — **1,93.**

 $\Pi^{\text{H}}_{i} = P^{\text{H}}_{i} M^{\text{H}}_{i} K_{\text{B}} K_{\text{HH}} = P^{\text{H}}_{i} M^{\text{H}}_{i} 1,8x1,93 = P^{\text{H}}_{i} M^{\text{H}}_{i} x 3,474;$

 $\Pi^{H}_{B\Pi K20} = 91 \text{ x } 1929,0 \text{ x } 3,474 = 609822,48 \text{ py6.};$

И так далее. Итого: 2 277 812,40 руб. Согласно [5] ущерб за сверхлимитный сброс загрязняющих веществ определяется по формуле 3:

где У – размер вреда водным объектам, тыс. руб.;

 $K_{\text{вг}}$ — коэффициент, учитывающий природно-климатические условия в зависимости от времени года (табл. 7), среднее за год — **1,16**;

Т а б л и ц а 7 Коэффициент, учитывающий время года, $K_{\mbox{\tiny BF}}$

№	Месяцы	Квг
1	Декабрь, январь, февраль	1,15
2	Март, апрель, май	1,25
3	Июнь, июль, август	1,10
4	Сентябрь, октябрь, ноябрь	1,15
5	При половодьях и паводках принимается коэффициент	1,05
6	Среднегодовое значение	1.16

 $K_{\text{ин}}$ — коэффициент индексации в 2003 г. — 1, 2004 г. — 1,1, 2005 г. — 1,2, 2006 г. — 1,3, 2007 г. — 1,4, 2008 г. — 1,48, 2009 г. — 1,62, 2010 г. — 1,79, 2011 г. — 1,93, 2012 г. — 2,05, 2013 г. — 2,10, 2014 г. — 2,33, 2015 г. — 2,45. В 2011 по отношению к 2007 1,93 / 1,4 = **1,3786**.

 H_i — такса для исчисления размера вреда при загрязнении в результате аварий водных объектов i-м вредным (загрязняющим) веществом (табл. 8), $H_{\text{БПКполн}} = 170$ тыс. руб/т, так как ПДК^э равен 3,0 мг/л.

Таблица8 Таксы для исчисления размера вреда от загрязнения водных объектов органическими и неорганическими ЗВ, H_i

No	Вещества с ПДКрх в интервале	H _i , тыс. руб., в ценах 2007 г.
1	Более 40 мг/л	5
2	5,0-39,9 мг/л	10
3	2,0-4,9 мг/л	170
4	0,2-1,9 мг/л	280
5	0,06-0,19 мг/л	510
6	0,02-0,05 мг/л	670
7	0,006-0,019 мг/л	4 350
8	0,003-0,005 мг/л	4 800
9	0,001-0,002 мг/л	12 100
10	0,0007-0,0009 мг/л	240 100
11	Менее 0,0007	2 960 000
12	Взвешенные вещества	30

 $K_{\text{из}}$ — коэффициент, учитывающий интенсивность негативного воздействия загрязняющих веществ на водный объект, устанавливается в зависимости от превышения фактической концентрации загрязняющего вещества при сбросе на выпуске сточных, дренажных вод над его фоновой концентрацией (в расчётах берётся по ПДК³) в воде водного объекта и принимается в размере (см. табл. 9).

Таблица9 Нормативная плата за сброс ЗВ в Осташковский плёс, ПДК₃, 29.07.2011 г. с учетом фона

Показатели	СПДКэ	Мфакт-фон	МПДС	Мел	Р, руб./т	П ^н , руб.
БПК20	3,00	3209,213	1929,0	1280,213	91	609822,48
N _{нитратный}	9,00	1202,41	1202,41	-	137,17	572982,69
N _{нитраитный}	0,02	30,864	12,86	18,004	45312,5	582718,75
N _{аммонийный}	0,40	1255,779	257,2	998,579	689	615630,31
Рфосфатов	0,2	51,44	51,44	-	1378	246252,12
Сульфаты	100,00	2700,6	2700,6	-	2,5	23454,71
Хлориды	300,00	7844,6	7844,6	E	0,9	24526,93
НП	0,05	353,65	353,65	2	5510	6769476,3
Железо	0,10	21,219	21,219	-	55096	4061390,8
Марганец	0.01	0,5144	0.5144	-	27548	49228,98

Окончание табл.9

Показатели	СПДКэ	Мфакт-фон	МПДС	Мел	Р, руб./т	П ^н , руб.
Медь	0,001	2,3148	0,643	1,6718	275481	615364,48
Цинк	0,01	12,217	6,43	5,787	27548	615362,26
Бериллий ¹	0,0002	0,00643	0,00643	75 4 8	275481	6153,64
Стронций ²	0,40	0,27649	0,27649		689	661,80
Ванадий	0,001	0,31507	0,31507	1=3	275481	301528,6
Кобальт	0,01	0,643	0,643		27548	61536,23
Хром (Cr ³⁺)	0,07	0,78446	0,78446	1,5	55100	150159,29
Молибден	0,001	0,9002	0,643	0,2572	229568	512804,85
Свинец	0,006	14,68612	3,858	10,82812	2755	36924,42
Селен	0,0016	1,33744	1,0288	0,30864	172176	615365,8
Мышьяк	0,01	1,48533	1,48533	-	5510	28431,8
Кадмий	0,005	1,05452	1,05452	-	55096	201838,81
Калий	30,0	3755,12	3755,12	\. 	6,2	80880,78
Кальций	30,0	7716,0	7716,0	()	1,2	32166,46
Никель	0,01	1,8647	1,8647	(III)	27548	178455,05
Фенолы	0,001	0,5144	0,5144	-	275481	492291,57
СПАВ	0,5	51,44	51,44	-	552	98643,81
Итого						2277812,40

Примечание: Бериллий 1 – ставка платы не установлена, берется равная 275481 руб./т;

Стронций 2 — ставка платы не установлена. Принята равной азоту аммонийному, 689 руб./т.

Для вредных (загрязняющих) веществ III-IV классов опасности:

- равной -1 при превышениях до 10 раз;
- равной -2 при превышениях от 10 и до 50 раз;
- равной 5 при превышениях более 50 раз.

Т а б л и ц а 10 Расчет ущерба за сверхлимитный сброс в оз. Селигер, ПДК $^{\circ}$, с учётом фона

Показатели	$C^{\Pi J K_9}$	Сфакт-фон	С _{ПДКэ}	КО	Мел	Н _і , тыс. руб.	Киз	У ^{сл} , тыс. руб.
БПК20	3,00	4,991	1,66	140	746,523	170	1	365307,2974
N _{нитрат}	9,00	1,87		3	20			
N _{нитрит}	0,02	0,048	2,4	2	18,004	670	2,4	83333,81851
N _{аммон}	0,40	1,953	4,88	4	998,579	280	1	804834,7024
Рфосф.	0,2	0,080		3	-			
Сульфаты	100,00	4,200		4	-			
Хлориды	300,00	12,200		4	(2)			
НП	0,05	0,550	11,0	4	321,5	670	2	1240086,585
Железо	0,10	0,033		3	-			
Марганец	0,01	0,0008		3	-			
Медь	0,001	0,0036	3,6	3	1,6718	12 100	1	58228,54323
Цинк	0,01	0,019	1,9	3	5,787	4 350	1	72461,77583
Бериллий	0,0002	0,00001		1	-			

Окончание табл.10

Показатели	Спдкэ	Сфакт-фон	Сфакт-фон СПДКэ	КО	Мел	H _i , тыс. руб.	Киз	У ^{сл} , тыс. руб.
Стронций	0,40	0,00043		2	-			121/2
Ванадий	0,001	0,00049		3				
Кобальт	0,01	0,0010		2	-			
Хром (Cr ³⁺)	0,07	0,00122		3	-			
Молибден	0,001	0,0014	1,4	2	0,2572	12 100	1,4	8958,23742
Свинец	0,006	0,02284	3,81	2	10,82812	4 350	3,81	516575,1691
Селен	0,0016	0,00208	1,3	2	0,3858	12 100	1,3	17468,56297
Мышьяк	0,01	0,00231		1	-			
Кадмий	0,005	0,00164		2	-			
Калий	30,0	0		2	-			
Кальций	30,0	12,000		(4)	-			
Никель	0,01	0,0029		2	-			
Фенолы	0,001	0,0008		-				
СПАВ	0,5	0,080		-				
Итого								3167254,692

Для БПК $_{\text{полн}}$ не имеющего класса опасности, К $_{\text{из}}$ составит 1, для азота нитритного – 2,4 (табл. 10).

 $У_{\text{БПК}}$ =2,8785х $H_{i}M_{i}$ К $_{u3}$ = 2,8785х170х746,523х1=365307,2974 тыс. руб.; Итого ущерб за сверхлимитный сброс 3B (табл. 10): 3 167 254,692 тыс. руб.

Т а б л и ц а 11 Расчет общего ущерба за сброс ЗВ в озеро Селигер, ПДК³, с учётом фона, тыс. руб.

	1 /	1 7	
Показатели	Пн	Усл	Уоб
БПК20	609,82248	365307,2974	365917,1199
N _{нитрат}	572,98269		572,98269
N _{нитрит}	582,71875	83333,81851	83916,53385
N _{аммон}	615,63031	804834,7024	805450,3327
Рфосф.	246,25212		246,25212
Сульфаты	23,45471		23,45471
Хлориды	24,52693		24,52693
НΠ	6769,4763	1240086,585	1246856,061
Железо	4061,3908		4061,3908
Марганец	49,22898		49,22898
Медь	615,36448	58228,54323	58843,90771
Цинк	615,36226	72461,77583	73977,13809
Бериллий	6,15364		6,15364
Стронций	0,66180		0,66180
Ванадий	301,5286		301,5286
Кобальт	61,53623		61,53623
Хром (Cr ³⁺)	150,15929		150,15929
Молибден	512,80485	8958,23742	9471,04227
Свинец	36,92442	516575,1691	516612,0935
Селен	615,3658	17468,56297	18083,92877
Мышьяк	28,4318		28,4318
Кадмий	201,83881		201,83881
Калий	80,88078		80,88078
Кальций	32,16646		32,16646
Никель	178,45505		178,45505
Фенолы	492,29157		492,29157
СПАВ	98,64381		98,64381
Всего:	2 277,8124	3 167 254,692	3 169 532,504

Согласно проведенным расчетам (табл. 11), значительный экологоэкономический ущерб в результате антропогенного влияния загрязняющих веществ в стоимостном выражении оценивается суммой более 3 млрд. руб.

Список литературы:

- 15. Анучин Д.Н. Озера области истоков Волги и верховьев Западной Двины (по исследованиям 1894-95 гг.). М., 1898. 123 с.
- 16. Анучин Д.Н. Из поездки к истокам Днепра, Западной Двины и Волги. Северный вестник, 1891, № 8. С. 36-65.
- 17. Методика исчисления размера вреда, причиненного водным объектам вследствие нарушения водного законодательства (утв. приказом МПР РФ от 13 апреля 2009 г. N 87).
- 18. Перечень рыбохозяйственных нормативов: предельно допустимых концентраций (ПДК) и ориентировочно безопасных уровней воздействия (ОБУВ) вредных веществ для воды водных объектов, имеющих рыбохозяйственное значение. М.: ВНИРО, 2010. 179 с.
- 19. ПП РФ от 12 июня 2003 г. № 344 «О нормативах платы за выбросы в атмосферный воздух загрязняющих веществ стационарными и передвижными источниками, сбросы загрязняющих веществ в поверхностные и подземные водные объекты, размещение отходов производства и потребления» // СЗ РФ. 2003. N 25. Ст. 2528.
- 20. Правила охраны поверхностных вод от загрязнения сточными водами. Типовые положения. М.: Госкомприрода СССР, 1991. 74 с
- 21. Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования.
- 22. Приказ Федерального агентства по рыболовству от 18 января 2010 г. N 20 «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения».
- 23. Руководство по химическому анализу вод суши. Π ., 1977. 532 с.
- 24. Цыганов А.А. Оценка качественного состава поверхностных вод в условиях г. Твери // Изменение природных комплексов в результате в результате антропогенной деятельности. Тверь: ТГУ, 1993. С. 45-52.
- 25. Цыганов А.А. Гидрохимическое состояние озера Селигер // Региональные геохимические исследования / Сб. научн. тр. Тверь: ТвГУ, 2005. С. 26-43.
- 26. Цыганов А.А. Оценка источников загрязнения аквальных комплексов бассейна Верхней Волги // Экология речных бассейнов:

- Труды 4-й межд. научн.- практ. конф. / Под ред. Т.А. Трифоновой. Владимир: ВГПУ, 2007. С. 448-451.
- 27. Цыганов А.А., А.Г. Жеренков А.Г. Плесы и острова озера Селигер // Мат. 4 межрегиональной научно-практической конференции «Проблемы развития внутреннего туризма в Центральной России», 4-6 декабря 2011 г., Ярославль. Ярославль: ЯГПУ, 2011. С. 201-205.
- 28. Цыганов А.А. Морфометрия плесов и островов озера Селигер // Вестник ТвГУ, сер. «география и геоэкология», 2011. Вып. 1(9). Тверь: ТвГУ, 2011. С. 33-47.
- 29. Цыганов А.А. Экологическое состояние островов озера Селигер. Монография. Берлин: Lambert Academic Publishing, 2013 141 с.
- 30. Цыганов А.А. Очерки по физической географии Твери: Монография. Тверь: Твер. гос. ун-т, 2015. 185 с. Электронная версия.
- 31. Цыганов А.А., Жеренков А.Г. Эколого-экономическая оценка поступления сточных вод и загрязняющих веществ в водные объекты г. Старица // Вестник ТвГУ, сер. «География и геоэкология», 2016. Вып. 3(13). Тверь: ТвГУ, 2016. С. 34-46.
- 32. Цыганов А.А., Жеренков А.Г. Эколого-экономическая оценка поступления загрязняющих веществ в озеро Селигер Осташковского района Тверской области// «Муниципальные образования современных регионов: проблемы исследования, развития и управления В условиях геополитической И политической нестабильности» / Мат. 1 международной научно-практической конференции 14-15 апреля 2016 г. (Россия, Воронеж, ВГУ). -Воронеж; ВГУ. С. 95-97.

ECOLOGICAL-ECONOMIC ASSESSMENT OF LAKE SELIGER

A. A. Tsyganov

Tver State University, Tver

Dana valuation of environmental damage surface water bodies from wastewater discharges into Ostashkov Reach Lake Seliger.

Keywords: hydrology, hydrochemistry, ecology.

Об авторе:

ЦЫГАНОВ Анатолий Александрович – кандидат географических наук, доцент кафедры физической географии и экологии ТвГУ, e-mail: Anatol Tsyganov@mail.ru