УДК 541.64:536.7

СОРБЦИЯ ВОДЫ РЕДКОСШИТЫМИ КСЕРОГЕЛЯМИ НА ОСНОВЕ ПОЛИАКРИЛАМИДА И ГУАРА

Л.В. Адамова, Н.А. Боровкова, Т.В. Терзиян

Уральский федеральный университет, г. Екатеринбург

Изучена сорбция воды ксерогелями на основе полиакриламида и гуара, отличающимися содержанием гуара в сетке. Рассчитаны разности химических потенциалов растворителя $\Delta\mu_1$, полимеров $\Delta\mu_2$, энергии Гиббса смешения с водой Δg^m . Установлено, что гуар обладает наибольшей сорбционной способностью к воде, полиакриламид - наименьшей. Показано, что сорбционная способность по отношению к воде ксерогелей ПАА-гуар уменьшается с увеличением количества гуара в ксерогеле. Определены степень набухания и удельная поверхность ксерогелей ПАА-гуар, которые практически не зависят от содержания гуара в сетке.

Ключевые слова: акриламид, гуар, ксерогели, водопоглощение, сорбция, термодинамика.

Полимерные гидрогели вызывают большой интерес благодаря своей способности поглощать и удерживать большое количество растворителя, на несколько порядков превышающего количество полимера. Гели на основе полиакриламида (ПАА) находят широкое применение, в том числе в биотехнологии и медицине [1]. При этом возникает вопрос о биосовместимости таких систем, которую можно увеличить, создавая комбинированные структуры с биополимерами. Так, можно получить гели со структурой полувзаимопроникающих сеток на основе химически сшитого полиакриламида и линейного полисахарида гуара, формирующего в водной среде физическую сетку макромолекулярных агрегатов. Гуар, или гуаровая камедь, представляет собой привитой сополимер, получаемый из семян гуарового растения. В молекуле гуара к β-(1,4)-гликозидно связанным остаткам маннозы через равные интервалы (1,6)-связями присоединены боковые цепи. состоящие из единичных остатков α-D-галактозы [2].

Цель данной работы состоит в исследовании термодинамики взаимодействия с водой редкосшитых ксерогелей на основе полиакриламида и гуара, влияния содержания гуара в сетке на сорбционную способность по отношению к воде и термодинамических параметров взаимодействия гидрогелей с водой.

Рис.1. Структурная формула гуара

Экспериментальная часть

Объектами исследования являлись гели, синтезированные радикальной полимеризации в водном растворе концентрацией АА 1.6 М с инициатором – персульфатом аммония Сшивающий агент метилендиакриламид $(NH_4)_2S_2O_8$. СН₂(NHCOCHCH₂)₂, плотность сшивки 1/300. В исходные смеси добавляли одинаковый объем растворов гуара разных концентраций для достижения определенного соотношения компонентов. Полимеризацию проводили в цилиндрических полиэтиленовых формах, в течение часа при температуре 80 °C. Гели промывали две недели при ежедневной смене воды до достижения постоянного значения рН 6.2.

Удаление воды из гелей проводили методом лиофильной сушки на приборе LABCONCO при температуре ловушки -86 °C и остаточном давлении 10^3 Па. Индивидуальные полимеры также высушены на воздухе при 70°C. Массовые доли гуара в ксерогеле составляли 0.65, 3.2, 6.2, 9 и 11.65 %.

Равновесную степень набухания гелей в воде определяли гравиметрическим методом, высушивая до постоянной массы образцы отмытых гелей. Удельную поверхность оценивали методом низкотемпературной сорбции паров азота с помощью автоматического анализатора пористости и поверхности TRISTAR 3020. Сорбцию воды ксерогелями при 298 К изучали объемным методом с помощью автоматического анализатора площади поверхности и пористости ASAP 2020.

Результаты и их обсуждение

В табл. приведены значения степени набухания гелей ПАА-гуар и величины удельной поверхности ксерогелей с разным содержанием гуара. Как видно, ни степень набухания, ни удельная поверхность практически не зависят от содержания гуара в сетке. Для оценки влияния типа полимерной матрицы на взаимодействие с водой была

изучена сорбция паров воды индивидуальными полимерами ПАА и гуар. Результаты представлены на рис. 2 в виде изотерм сорбции в координатах: x/m — количество Γ воды, поглощенное 1Γ полимера, P/P_s — относительное давление паров воды. Видно, что гуар обладает значительно большей сорбционной способностью по отношению к воде во всей области относительных давлений.

Степень набухания и удельная поверхность систем ПАА-гуар

Состав ксерогеля	α	$S_{yд., M}^2/\Gamma$
ПАА	27	19.0227
ПАА-гуар(ω _{гуара} =0.65%)	25	19.4338
ПАА-гуар($\omega_{\text{гуара}}=3.2\%$)	23	23.0696
ПАА-гуар($\omega_{\text{гуара}}=6.2\%$)	22	25.7312
ПАА-гуар($\omega_{\text{гуара}}=9\%$)	24	19.6381
ΠΑΑ-Γγαρ($ω_{\text{гуара}}=11,65\%$)	24	23.9168
Гуар	-	17.8979

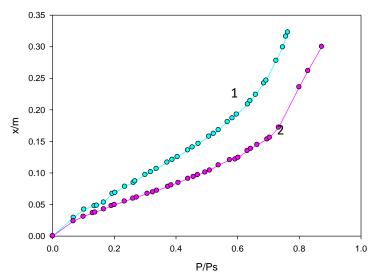
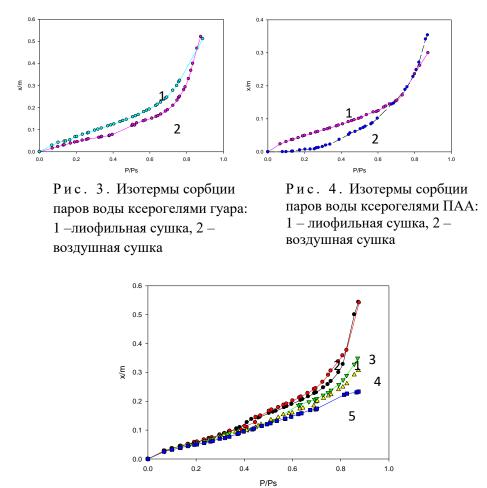



Рис. 2. Изотермы сорбции паров воды ксерогелями: 1 – гуар, 2 – ПАА

Влияние способа удаления воды из гелей на их сорбционную способность к воде следует из сравнения изотерм сорбции для гуара и ПАА, высушенных лиофильной сушкой и сушкой на воздухе. Из рис. 3, 4 следует, что способ сушки значительно влияет на сорбционную способность полимеров по отношению к воде. Сорбционная способность образцов, высушенных методом лиофильной сушки, оказалась существенно выше, чем у полимеров,

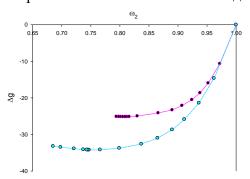
высушенных на воздухе. Только при больших относительных давлениях изотермы сближаются. Эти результаты согласуются с литературными данными, которые свидетельствуют о том, что криогели, синтезированные при температурах ниже температуры замерзания растворителя, обладают рыхлой, макропористой структурой, содержащей поры больших размеров [3; 4].

Р и с. 5. Изотермы сорбции паров воды ксерогелями ПАА-гуар: 1 - 0,65, 2 – 3,2, 3 – 6,2, 4 – 9, 5 – 11,65 % гуара

На рис. 5 приведены изотермы сорбции воды ксерогелями ПААгуар с разным содержанием последнего. Обращает на себя внимание, что сорбция воды уменьшается с увеличением содержания гуара в сетке, несмотря на то что сам гуар имеет наибольшую сорбционную способность к воде. Уменьшение водопоглощения ксерогелей ПАА при введении гуара может быть связано с взаимодействием полярных групп гуара с ПАА, что, по-видимому, препятствует образованию водородных связей с водой [5]. Это приводит к уменьшению сорбционной способности по отношению к воде.

На основании экспериментально полученных изотерм сорбции при T=298 K рассчитывали разности удельных химических потенциалов растворителя:

$$\Delta \mu_1 = (RT / M_1) * \ln(P / P_S) \tag{1}$$


Изменение химического потенциала полимерного компонента рассчитывалось по уравнению Гиббса – Дюгема:

$$\Delta \mu_2 = \int (\omega_1 / \omega_2) d(\Delta \mu_1) \tag{2}$$

Зная $\Delta \mu_1$ и $\Delta \mu_2$, рассчитывали среднюю удельную энергию Гиббса смешения полимеров с водой:

$$\Delta g^m = \omega_1 \Delta \mu_1 + \omega_2 \Delta \mu_2 \tag{3}$$

На рис. 6, 7 представлены концентрационные зависимости энергий Гиббса смешения с водой ксерогелей гуара, полиакриламида и комбинированных систем ПАА-гуар. Величины Δg^m имеют отрицательные значения, а кривые $\Delta g^m = f(\omega_2)$ выпуклы книзу в изученной области составов, т. е. $\partial^2 g/\partial \omega_2^2 > 0$, что говорит о термодинамической устойчивости систем [6]. Расположение кривых соответствует расположению изотерм: чем больше сорбционная способность полимера по отношению к воде, тем более отрицательна энергия Гиббса смешения их с водой во всей области составов.

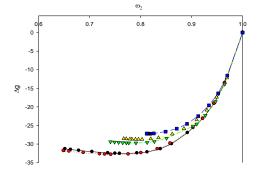


Рис. 6. Концентрационная зависимость энергии Гиббса смешения с водой ксерогелей: 1 — гуар, 2 — ПАА.

Рис. 7. Концентрационная зависимость энергии Гиббса смешения с водой ксерогелей ПАА-гуар: 1-0.65, 2-3.2, 3-6.2, 4-9, 5-11.65% гуара.

Работа выполнена при частичной финансовой поддержке гранта РФФИ 16-08-00609.

Список литературы

- 1. Филиппова О.Е. // Высокомолек. соед. 2000. Т.42А, №12. С. 2328.
- 2. Alphons C.J., Claus Rolin C., Marr B.U. et al. Polysaccharides, Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co, 2000. P. 455–461.
- 3. Dinu V.M., Ozmen M.M., Dragan S.E., Okay O. // Polymer. 2007. V. 48, №7. P. 195–204.
- 4. Лозинский В.И. // Успехи химии. 2002. Т. 71, № 6. С. 559–584.
- 5. Вшивков С.А., Адамова Л.В., Сафронов А.П. Термодинамика полимерных систем. Екатеринбург: АМБ, 2011. 480 с.
- 6. Тагер А.А. Физико-химия полимеров, М.: Научный мир, 2007. 576 с.

WATER SORPTION OF XEROGELS ON THE BASIC OF POLYACRYLAMIDE AND GUAR GUM

L. V. Adamova, N. A. Borovkova, T. V. Terzian

Ural Federal University, Yekaterinburg

The water sorption of polyacrylamide and guar based xerogels, with different guar concentration was researched. The change in chemical potentials of the solvent, of polymers $\Delta\mu_1,\,\Delta\mu_2,$ and the Gibbs energy of mixing with water Δg^m were calculated. It is found that guar has a higher sorption capacity for water, while polyacrylamide has lesser capacity. It is shown that the sorption capacity to water in PAA-guar xerogels decreases with increasing of guar in the xerogel. The swelling degree and surface area of PAA-guar xerogels was determined. The degree of swelling and surface area is independent on changes in the guar concentration in grid.

Keywords: acrylamide, guar gum, xerogels, water sorption, thermodynamic.

Об авторах:

АДАМОВА Лидия Владимировна – доцент, кандидат химических наук, доцент кафедры высокомолекулярных соединений ИЕНиМ УрФУ, lidia.adamova@urfu.ru

БОРОВКОВА Надежда Александровна – магистрант кафедры высокомолекулярных соединений ИЕНиМ УрФУ, zefirunet@mail.ru

ТЕРЗИЯН Татьяна Вячеславовна – доцент, кандидат химических наук, доцент кафедры высокомолекулярных соединений ИЕНиМ УрФУ, tatiana.terzian@urfu.ru