УДК 541.183

ОПРЕДЕЛЕНИЕ ТОЧКИ ГЕЛЕОБРАЗОВАНИЯ ПОЛИМЕРСОДЕРЖАЩИХ СОСТАВОВ ВИБРАЦИОННЫМ МЕТОДОМ

А. В. Богословский, И. С. Кожевников, Л.А. Стасьева, Л.К. Алтунина

Институт химии нефти СО РАН, г. Томск

Рассмотрено применение вибрационного метода для определения точки гелеобразования полимерсодержащих составов. Предложен вискозиметр двойного резонанса, предназначенный для контроля кинетики потери текучести.

Ключевые слова: реокинетика, гелеобразующие составы, точка гелеобразования, вибрационная вискозиметрия.

Гелеобразующие составы (ГОС), широко применяющиеся в различных областях промышленности представляют собой изначально маловязкие растворы, в процессе использования теряющие текучесть и образующие гели [1, с. 8-9, 155-157]. В их составе часто содержатся полимеры – метилцеллюлоза [2, с.42–47], полиакриламид [3, с.27–35], полиэтиленоксилы. поливиниловый спирт. И ДD. Полимеры применяются в качестве гелеобразующей основы и в качестве добавки для регулирования свойств получающегося геля. Потеря текучести может происходить как при изменении внешних условий, например, температуры (термотропные ГОС), так и через определенное время после смешивания компонентов (бинарные ГОС).

Точка гелеобразования (момент времени или температура потери текучести), является важнейшей эксплуатационной характеристикой ГОС. Она характеризуется резким увеличением вязкости образца, появлением упругости, и определяется с помощью реологических измерений, однако это является нетривиальной задачей.

Вибрационный метод измерения обеспечивает непрерывную регистрацию изменяющейся вязкости в широком диапазоне при минимальном разрушении образующейся структуры и соответствует основным требованиям, предъявляемым в данном случае к экспериментальному методу. Измеряется связанная с вязкостью тормозящая сила, действующая со стороны жидкости на колеблющееся в ней пробное тело (ПТ) [4, с. 21, 26–27]. В предлагаемой работе рассматривается применение указанного метода для контроля кинетики потери текучести полимерсодержащих составов. При таких измерениях пробное тело излучает в окружающее пространство сдвиговую волну, скорость затухания которой связана с характеристиками контролируемой среды. Если объект измерения – маловязкая ньютоновская жидкость, то волна быстро затухает, измерительный сосуд можно считать бесконечным. Для нетекучих образцов возможен перенос такой волны от зонда до стенки сосуда, ее отражение и интерференция испускаемой и отраженной волн. При этом сосуд бесконечным считать нельзя. Результат измерения становится зависимым от его размеров и на получаемой кривой появляются квазипериодические, связанные с интерференцией фрагменты.

В [5, с. 98–100] показано, что огибающие интерференционных графиков с увеличением размера измерительной ячейки смещаются в сторону более прочной структуры, а область расхождения реокинетических зависимостей, полученных в измерительных сосудах разной величины, соответствует началу гелеобразования. Технической базой рассматриваемого метода являются вибрационные вискозиметры. В частности, для исследования процессов структурообразования разработанный В ИХН CO PAH предназначен вискозиметр «Реокинетика». Выходной сигнал датчика вискозиметра – напряжение U, мВ пропорционален значению механического сопротивления Z, которое непосредственно связано с вязкостью η и плотностью р исследуемого образца. Используются относительные величины:

$$Z_{\text{oth}} = \frac{U - U_{\text{bosg}}}{U_{\text{st}} - U_{\text{bosg}}} = \frac{\sqrt{\rho\eta}}{\sqrt{\rho_{\text{st}}\eta_{\text{st}}}},$$

где рэт и потность и вязкость эталона соответственно.

Значения $U_{возд}$ и $U_{эт}$, которые соответствуют движению ПТ на воздухе и в эталонной жидкости, записываются в начале каждого измерения. В ходе кинетического эксперимента с помощью присоединенного компьютера непрерывно регистрируется величина текущего сигнала U_i. Далее, для каждого значения U_i по формуле (1) вычисляется Z_{отнi}. Конечный результат измерения – зависимость механического сопротивления Z_{отн}. от времени или температуры.

Мы использовали изображенный на рис. 1 вариант вискозиметра, оснащенный двумя идентичными датчиками и двумя рубашками – термостатами для измерительных ячеек разного диаметра (вискозиметр двойного резонанса). Основой устройства является вертикальный стендштатив 1 с двумя стержнями 1.2. В его массивном основании 1.1 размещен источник питания установки.

Рис.1. Двухзондовый вискозиметр. 1 - стенд-штатив: 1.1 - основание, 1.2 - направляющие стержни, 1.3 - неподвижная платформа, 1.4 -вертикальная пластина, 1.5 - индикатор питания, 1.6 - тумблер питания, 1.7 - ножки. 2 - подвижная платформа с блоком ячейки: 2.1 - прижимная гайка, 2.2 - подвижная платформа, 2.3 - фиксирующий винт, 2.4 - вертикальный ползун, 2.5 - горизонтальный ползун, 2.6 - опорная пластина, 2.7 - фиксирующий винт блока измерительной ячейки, 2.8 - термостат-рубашка, 2.9 - измерительная ячейка. 3 - блок датчика: 3.1 - зонд, 3.2 - корпус датчика, 3.3 - камертон, 3.4 - противовес, 3.5 - цанга. 4 - блок управления датчика: 4.1 - лицевая панель, 4.2 - дисплей, 4.3 - цилиндрическая вставка, 4.4 - кнопки настройки вискозиметра

На передней панели основания расположены индикатор 1.5 и тумблер 1.6 питания. Выше, на подвижной платформе 2.2. на горизонтальных ползунах 2.5 расположены две рубашки - термостата 2,8, в которых размещаются измерительные ячейки 2.9 различного размера. Вискозиметр оснащается ячейками 10, 12, 15 и 16 мм. На соединенной с основанием посредством стержней 1.2 неподвижной платформе 1.3. расположены вибрационные датчики вязкости, к камертонам 3.3 которых присоединены зонды 3.1. В качестве пробного тела (зонда) в установке используется стеклянный стержень диаметром (d) 4мм с оттянутым рабочим участком. Еще выше, к двум вертикальным пластинам 1.4 посредством цилиндрических вставок 4.3 присоединен блок управления 4, который обеспечивает колебательное движение зондов и непрерывную передачу данных в присоединенный компьютер.

Для демонстрации возможностей метода в качестве объектов использовали полимерсодержащие составы разного способа инициорования:

- термотропные составы на основе полимера с нижней критической температурой растворения (НКТР) – метилцеллюлозы;

- бинарные составы на основе неорганического гидроксополимера алюминия и полимера с высшей критической температурой растворения (ВКТР) – поливинилового спирта;

- составы с двумя гелеобразующими компонентами.

Таблица 1

№ ГОС	Характеристика
1	Термотропный ГОС на основе полимера с НКТР – простого эфира
	целлюлозы, с добавлением электролита.
2	Термотропный ГОС на основе полимера с НКТР – простого эфира
	целлюлозы с добавлением электролита и глицерина
3	Бинарный ГОС на основе неорганического гидроксополимера
	алюминия
4	Бинарный ГОС на основе неорганического гидроксополимера
	алюминия и полимера с ВКТР.
5	Термотропная композиция, содержащая два гелеобразующих
	компонента – неорганический (многоатомный спирт) и полимерный
	с НКТР – простой эфир целлюлозы

Объекты исследования

Термотропные составы готовили путем растворения навесок компонентов в дистиллированной воде при постоянном перемешивании при комнатной температуре. Для бинарных композиций готовили два раствора, которые сливали при постоянном перемешивании непосредственно перед измерением. Полученные образцы помещали в измерительные ячейки и непрерывно регистрировали механическое сопротивление. В качестве эталона использовали воду.

Типичная зависимость механического сопротивления гелеобразующего состава от времени (температуры) изображена на рис. 2. На ней можно выделить три характерных участка.

1 – практически горизонтальный, соответствует маловязкому раствору, который образуется сразу после сливания компонентов.

2 – область монотонного увеличения механического сопротивления (вязкости).

3 – крайний правый квазипериодический фрагмент

Рис. 2. Типичная зависимость относительного механического сопротивления от времени

Образец ГОС-1 готовили весовым методом при постоянном перемешивании при комнатной температуре. Полученный раствор помещали в измерительные ячейки разной величины (d = 10, 12 и 15 мм). Каждую из ячеек помещали в термостат-рубашку соответствующего размера. Перед каждым измерением фиксировали значение $U_{возд}$, и $U_{3T,}$. Далее, каждый из образцов нагревали от 25 до 60 °С, непрерывно регистрируя выходной сигнал вискозиметра (напряжение U_i). Рассчитывали значения Z_{oTH} , строили зависимости Z_{oTH} от температуры (рис. 3А), и их огибающие (рис. 3Б).

Зависимости относительного механического сопротивления от температуры для композиции ГОС-1 (рис. 3А) в общих чертах соответствуют рис. 2. В области от 25 до 40 °С полученные графики для всех измерительных сосудов практически совпадают, также как их

огибающие (рис. 3Б). Вязкость растворов с ростом температуры незначительно уменьшается.

Рис.3. А – зависимости относительного механического сопротивления от температуры ГОС-1, полученные с использованием измерительных ячеек диаметра 10,12 и 15 мм; Б – огибающие этих зависимостей

Начиная с 40 °С кривые начинают расходиться. Положение фрагментов, демонстрирующих быстрое изменение механического сопротивления и экстремумов правых квазипериодических участков, с увеличением диаметра ячейки смещается в сторону более прочной структуры (более высокой температуры). Точка гелеобразования, определенная как точка расхождения огибающих – около 40 °С.

Далее, исследовали состав ГОС-2, который отличается от ГОС-1 меньшим содержанием электролита и присутствием многоатомного спирта. Приготовленный весовым методом при постоянном перемешивании, раствор ее компонентов помещали в измерительные ячейки диаметром 12 и 15 мм. Каждую из ячеек помещали в термостатирующую рубашку, после чего нагревали от 25 до 60 °C, при этом непрерывно регистрировали выходной сигнал вискозиметра.

Зависимости, полученные для ГОС-2 (рис 4А), имеют типичный вид, и на них наблюдаются те же характерные фрагменты. Начальные участки (от 25 до 40–45 °C) графиков, полученные с использованием различных ячеек, совпадают, однако соответствующее значение величины $Z_{\text{отн}}$ для состава ГОС-2 выше, чем для состава ГОС-1 на две относительные единицы вследствие большей начальной вязкости из-за

Вестник ТвГУ. Серия: Химия. 2017. № 4.

присутствия глицерина. Локальный минимум кривых, который 45 °C, обусловлен достигается при снижением вязкости глицеринсодержащего раствора с увеличением температуры в области ниже точки гелеобразования. Далее, около 45 °C, следуют области быстрого монотонного возрастания Z, где результаты, полученные для d = 12 и d = 15 практически совпадают. После 47.5 °С кривые и их огибаюшие расходятся И начинаются ярко выраженные квазипериодические фрагменты. Их положение и амплитуда зависят от величины использованного измерительного сосуда. Огибающие (рис. 4Б) с увеличением размера ячейки смещаются в сторону более прочной структуры, а температуру 47.5 °С можно считать температурой гелеобразования.

Бинарные ГОС-3 и ГОС-5 имеют неорганическую основу. ГОС-5 отличается содержанием ПВС и имеет более чем в 5 раз большее начальное значение механического сопротивления. На рис. 5 приведена динамика их механического сопротивления (зависимости от времени) в ячейках диаметром 10 и 12 мм при 60 °С.

Рис.4. А -зависимости относительного механического сопротивления от температуры ГОС-2, Б - огибающие этих зависимостей

Рис.5. Зависимости относительного механического сопротивления от времени для ГОС-3 и ГОС-4 при T=60 $^\circ\text{C}$

Рис. 6. Зависимости $Z_{\text{отн}}$ от времени для состава ГОС-5 при T=60 °С

Зависимости Z(t), полученные для ГОС-3 в разных измерительных сосудах имеют совпадающие начальные практически горизонтальные участки (первые 250 с). Далее – совпадающие участки монотонного, практически линейного, возрастания вязкости (250–1000 с). Затем кривые расходятся, и начинаются отчетливо выраженные квазипериодические фрагменты. Положения максимумов

рассматриваемых кривых с увеличением размера ячейки смещается в сторону более прочной структуры.

Начальное значение относительного механического сопротивления полимерсодержащего состава ГОС-4 при комнатной температуре значительно выше и несколько уменьшается в течение первых 100 с эксперимента очевидно, вследствие прогрева образца. Последующие участки рассматриваемых зависимостей (от 120 до 500 с) демонстрирует быстрое монотонное увеличение вязкости. В этой области результат измерения не зависит от размеров сосуда и приведенные графики практически совпадают. Далее следуют квазипериодические фрагменты, и кривые Z(t) расходятся примерно на 500 с. Наблюдаемые для системы ГОС-4 немонотонные фрагменты имеют явно больший, чем для раствора без ПВС период повторяемости - за время эксперимента зарегистрирован только один максимум (в области 500 и около 1200 с. для 10 и 12 мм ячейки соответственно) и лишь намечен последующий рост Z. В то же время, общая тенденция смещения положения максимумов указанных зависимостей в сторону большего времени гелеобразования, сохраняется. Точка расхождения зависимостей 500 с – время гелеобразования ГОС-4.

По тангенсу угла наклона касательных к участкам монотонного возрастания вязкости (рис. 5, прямые a, b), можно оценить относительную скорость роста зародышей новой фазы. В ПВСсодержащей жидкости скорость их роста оказывается приблизительно 1.8 раза больше. Это обстоятельство, по-видимому, определяет двукратную разницу во временах гелеобразования рассматриваемых растворов. Сравнивая ординаты точек гелеобразования ГОС-3 и ГОС-4 (Z=5.5 и Z=9.5) можно заключить, что гель, образованный в присутствие ПВС, обладает вдвое большим механическим сопротивлением, нежели гель в системе без ПВС.

Далее, регистрировали изменение текучести композиции с двумя (ΓOC-5). гелеобразующими компонентами Использовали измерительные ячейки d=12 и 15 мм. Полученные зависимости представлены на рис. 6. Присутствие глицерина обуславливает достаточно высокую начальную вязкость образца. В течение первых 200с Z уменьшается (прогрев жидкости). На этом участке кривые, полученные с использованием разных ячеек, совпадают. Они расходятся в области 250 с, затем, с увеличением времени, начинаются участки быстрого возрастания Z, и далее следуют немонотонные фрагменты. Как и для ГОС-4, наблюдаемые для ГОС-5 (рис. 6), немонотонные фрагменты рассматриваемых зависимостей имеют больший период повторяемости, чем для составов ГОС-1 - ГОС-3. За время эксперимента зарегистрирован только один максимум для d=12. При этом общий характер смещения реокинетической зависимости в сторону более прочной структуры, сохраняется. Время гелеобразования ГОС-5 составляет 250 с.

Таким образом, зарегистрирована кинетика потери текучести и определены точки гелеобразования полимерсодержащих составов разного механизма действия. Для всех исследованных систем при измерительного огибающие увеличении размера сосуда сопротивления реокинетических зависимостей механического (вязкости) от времени или температуры смещаются в сторону более прочной структуры. Метод сравнения огибающих и вискозиметр двойного резонанса могут быть использованы для определения точки гелеобразования полимерсодержащих ГОС.

Список литературы

- 1. Алтунина Л.К., В.А. Кувшинов В.А. Увеличение нефтеотдачи пластов композициями ПАВ. Новосибирск: Наука, 1995. 198 с.
- Алтунина Л.К., Кувшинов В.А., Стасьева Л.А., Дорохов В.П., Гусев В.В. // Нефтехимия. 1999. Т.39, №1. С.42–47.
- Теоретические и прикладные основы физико-химического регулирования свойств нефтяных дисперсных систем. Часть 3. Сборник трудов СО РАН. Томск: ТГУ, 2001. 188 с.
- 4. Крутин В.Н. Колебательные реометры. М.: Машиностроение, 1985. 160 с.
- 5. Богословский А.В., Галкин В.М., Кожевников И.С. // Газовая промышленность. 2013. № 11. С. 98–100.

DETERMINING THE POINT OF GELATION OF POLYMER-CONTAINING COMPOSITIONS OF THE VIBRATIONAL METHOD

A.V. Bogoslovsky, I.S. Kozhevnikov, L.A. Stasieva, L.K. Altunina

Institute of petroleum chemistry SB RAS

The paper describes the application of the vibration method for determining the point of gelation of polymer-containing compositions. The proposed viscometer double resonance, designed to monitor the kinetics of loss of fluidity.

Keywords: gel-forming compositions, the point of gelation, vibrating viscosimetry.

Об авторах:

БОГОСЛОВСКИЙ Андрей Владимирович – кандидат химических наук, старший научный сотрудник, Институт Химии Нефти СО РАН, e-mail: bav@ipc.tsc.ru

КОЖЕВНИКОВ Иван Сергеевич – инженер-исследователь, Институт Химии Нефти СО РАН, e-mail: www.tsu@gmail.com

СТАСЬЕВА Любовь Анатольевна – научный сотрудник, Институт Химии Нефти СО РАН, e-mail: lkhn304@ipc.tsc.ru

АЛТУНИНА Любовь Константиновна – доктор технических наук, профессор, Институт Химии Нефти СО РАН, e-mail: alk@ipc.tsc.ru

Поступила в редакцию 28 марта 2017 г.