УДК 537.226.4 DOI 10.26456/vtchem2018.4.4

РАЗМЕРНЫЕ ЭФФЕКТЫ ПРИ ИМПУЛЬСНОМ ОТЖИГЕ ТОНКИХ ПЛЁНОК ОКСИДА ГАФНИЯ

А.Г. Итальянцев¹, В.С. Константинов^{1,2}

¹НИИ молекулярной электроники, Зеленоград, Москва ²Московский физико-технический институт, г. Долгопрудный, Московская область

Исследован размерный эффект остаточной поляризации в тонких пленках оксида гафния, легированного цирконием и подвергнутых импульсному термическому отжигу. Измерена остаточная поляризация структур, содержащих слои $Hf_{0.5}Zn_{0.5}O_2$ с толщиной от 10 до 54 нм. Показано, что с увеличением толщины удвоенная остаточная поляризация уменьшается в 2.5 раза с 16 до 6 мкКл/см².

Ключевые слова: сегнетоэлектричество, оксид гафния, размерный эффект

введение

развитие электроники способствует усилению Активное требований к скорости и безопасности хранения данных и созданию наиболее энергонезависимой памяти. Одной из новых типов перспективных разработок в этой области является сегнетоэлектрическая память (FeRAM) [1]. В её основу заложена способность сегнетоэлектрических плёнок сохранять направление вектора электрической поляризации, которая может быть переключён внешним электрическим полем. Идентификатором информационного состояния ячейки служит направление вектора поляризации. В цикле считывания на ячейку подаётся пробный импульс напряжения, величине с напряжением программирования совпадающий ПО логического «0». Если их полярности различаются, то происходит переполяризация, сопровождающаяся всплеском тока в выходной цепи. В противном случае переполяризационного сигнала не возникает.

Первые разработки FeRAM относятся к 1992 году, которые проводились в лабораториях компании Symmetrix. В течение двух десятилетий сегнетоэлектрическая память прошла путь от опытных образцов до серийных микросхем. Передовые микросхемы памяти обладают информационной ёмкостью до 16 Мбит. Быстродействие в режиме считывания и записи находится на уровне 25-45 нс. Управляющие напряжения не превышают 3 В, а потребляемые токи - 0.1 мА [2]. Ресурс перезаписи составляет по порядку величины 10¹⁴ циклов, что соответствует 20 годам службы и в совокупности с MRAM

является рекордным показателем среди всех видов энергонезависимой памяти.

сеголняшний Ha лень основным соединением лля функциональных слоёв сегнетоэлектрической памяти является цирконат-титанат свинца (ЦТС). Высокое значение остаточной поляризации и малое коэрцитивное поле определили его доминирующее положение при производстве FeRAM. Вместе с тем, интеграция ЦТС в стандартный КМОП-процесс повлекла за собой существенные трудности, обусловленные химическими свойствами соединения, а именно: необходимость инкапсулирования боковых и горизонтальных поверхностей [3,4] и невозможность создания плотной упаковки в библиотеке памяти из-за потери сегнетоэлектрических свойств при переходе к слоям с толщиной менее 40 нм [5,6]. В связи с этим в настоящее время активно ведутся исследования плёнок HfO₂, свободных от указанных недостатоков. Во-первых, слои на основе оксида гафния.

В [7] была впервые показано наличие орторомбической фазы оксида гафния, обладающая переключаемой электрической поляризацией. В отличие от ЦТС соединения на основе HfO₂ химически пассивны и, как оказалось [7], масштабируемы без ухудшения поляризационных свойств вплоть до толщин в несколько нанометров. Это означает, что может быть улучшена топология структур. Дополнительно, предшествующие исследования оксида гафния и его использование как подзатворного диэлектрика полевых транзисторов сформировал существенный научно-технический задел, с помощью которого внедрение в FeRAM может быть осуществлено без усложнения технологического маршрута.

Для получения стабильной сегнетоэлектрической фазы необходим импульсный быстрый термический отжиг при температуре свыше 400 °С – температуры перехода центрально-симметричной фазы в орторомбическую. Как правило, температура отжига, как правило, находится в диапазоне от 500 °С до 1000 °С, при том воздействие осуществляется в течение 1 – 20 секунд и по необходимости проводится в азотной атмосфере [7-9].

Особенности структур на основе ЦТС - размерный эффект поляризации, то есть уменьшение остаточной поляризации с уменьшением толщины [10, с. 356]. Зависимость остаточной поляризации от толщины показана на рисунке 1. Ожидается, что в структурах FeRAM на основе легированного оксида гафния также будет присутствовать размерный эффект, но обратный, то есть с уменьшением толщины. Он может ухудшить воспроизводимость итоговых характеристик. Понимание природы обратного эффекта позволит контролировать параметры структур FeRAM и избежать их критических изменений. В связи с этим работа посвящена актуальному вопросу физикотехнологических причин наблюдаемого обратного эффекта остаточной поляризации.

Рис. 1 Зависимость остаточной поляризации от толщины слоя ЦТС

В данной работе предложена модель влияния электродов и параметров отжига на формирование орторомбической фазы в тонких плёнках оксида гафния и, как следствие, на остаточную поляризацию и коэрцитивное поле. Эти параметры определяют уровни управляющих напряжений и выходных токов микросхемы.

МОДЕЛЬ

Осажденные методами АСО пленки HfO₂ до отжига находятся преимущественно в несегнетоэлектрической моноклинной фазе (mфазе) [11]. После напыления верхнего электрода и последующего активный превращается отжига слой в твёрдый раствор несегнетоэлектрических начальной m-фазы и тетрагональной t-фазы и орторомбической о-фазы. Доля о-фазы определяет сегнетоэлектрические свойства конечной структуры. Верхний электрода в процессе отжига [12] необходим, чтобы создать тангенциальные напряжения внутри функционального слоя. Кроме того, критически важен температурный режим осаждения и отжига на конечную остаточную поляризацию [13]: при слишком низких температурах сегнетоэлектрическая фаза не образуется, при высоких – переходить в tфазу.

Экспериментально установлено, что более толстые плёнки обладают более низкой температурой кристаллизации в силу меньшего соотношения «площадь-объем». По этой причине при фиксированной температуре осаждения верхнего электрода TiN 450 оС пленки больших

толщин кристаллизуются уже до отжига, что снижает долю орторомбической фазы и, как следствие, величину остаточной поляризации [14].

Выдвинута гипотеза, что в процессе отжига верхний электрод обеспечивает по всей толщине тонких плёнок тангенциальные напряжения выше порогового, необходимого для формирования орторомбической фазы (рисунок 2). В более толстых плёнках пороговое механическое напряжения формируется не по всей толщине пленки, что приводит ухудшению или отсутствию сегнетоэлектрического эффекта.

Рис. 2 Распределение тангенсальных напряжений в плёнках оксида гафния

ЭКСПЕРИМЕНТАЛЬНЫЕ ОБРАЗЦЫ

Структуры для проведения исследования были выполнены на кремниевой подложке диаметра 100 нм. Далее методами магнетронного напыления наносился нижний электрод TiN. Слой оксида гафния был получен методом атомно-слоевого осаждения (АСО) в реакторе Sunale R-150 (Picosun OY) с горячими стенками при пониженном давлении. В качестве газа носителя и для продувки камеры использовался азот особой чистоты (99.999 %). Температура реактора находилась в диапазоне 240-280 °C. Толщина получаемых слоев контролировалась с помощью лазерного эллипсометра SENTECH adv 500.

Осаждение верхних электродов из платины проводилось методом электронно-лучевого осаждения распылением через теневую маску с круглыми отверстиями на установке Edwards Auto 500 Deposition System.

Конечные структуры в виде TiN(15 нм)/Hf_{0.5}Zn_{0.5}O₂ (10-54 нм)/Pt(30 нм) подвергали быстрому термическому отжигу в атмосфере азота высокой частоты на установке Jipelec JetFirst в течение 30 секунд. Процесс отжига реализован в виде рецепта для установки Jipelec JetFirst. Температура отжига составила около 400 °C.

Итоговый послойный состав структуры показан на рисунке 3.

Рис. З Послойный состав тестовой структуры

Исследование образцов проводилось использованием c анализатора полупроводниковых приборов Agilent B1500A на зондовой станции Summit 11000М (Cascade Microtech), а также программ, написанных в среде Matlab. Контакт к электродам осуществлялся по схеме, приведенной на рисунке 4, при этом омичность к нижнему обеспечивалась втиранием электроду серебряной пасты В предварительно механически проскрайбированные участки диэлектрика, либо протравливанием контактных площадок размером 1х1 мм в аргоне с энергией пучка 3 кэВ в течение 5 минут на установке Theta Probe (Termo Fisher Scientific).

В ходе снятия ВАХ нижний электрод был заземлен, а к верхнему электроду прикладывалось пилообразное напряжение с генератора импульсов Agilent 16440A в квазистатическом режиме. Амплитуда пилообразного сигнала варьировалась от 1 до 5 В. Петли гистерезиса были получены интегрированием тока смещения по времени при приложении пилообразного напряжения и его делением на площадь электродов. Измерения проводились для образцов с толщинами 10, 20, 29, 43 и 54 нм.

Рис. 4 Схема электрофизических измерений

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате экспериментальных исследований для каждого из образцов были получены кривые диэлектрического гистерезиса, по которым построена зависимость (рисунок 5) между величиной двойной остаточной поляризации и толщиной сегнетоэлектрического слоя. Она показала наличие размерного эффекта в тонких плёнках Hf_{0.5}Zn_{0.5}O₂: с утолщением от 10 до 54 нм удвоенная остаточная поляризация уменьшается в 2.5 раза с 16 до 6 мкКл/см².

Полученная зависимость демонстрирует аномальный эффект, который не соответствует аналогичным данным по ЦТС. В литературных источниках [10, с. 356] указано, что плёнки ЦТС демонстрируют обратную корреляцию поляризации и толщины. Снижение поляризации при утонении объясняется изменением параметра тетрагональности плёнок – отношения a/d, где a – постоянная решётки вдоль оси поляризации, d – вдоль перпендикулярной. Зависимость остаточной поляризации от толщины ЦТС была представлена на рисунке 1 [10, с. 356].

Рис. 5 Зависимость двойной остаточной поляризации от толщины сегнетоэлектрического слоя $Hf_{0.5}Zr_{0.5}O_2$

выводы

Результаты исследования экспериментальных образцов подтвердила гипотезу об обратном размерном эффекте поляризации в тонких плёнках оксида гафния: с уменьшением толщины слоя остаточная поляризация увеличивается. Представляется актуальным дальнейшее исследования механизма возникновения этого эффекта и

Вестник ТвГУ. Серия: Химия. 2018. № 4.

уточнения его феноменологической модели, с помощью которой можно будет точнее контролировать итоговые характеристики тонких плёнок легированного оксида гафния.

СПИСОК ЛИТЕРАТУРЫ

- Takashima D. Overview of FeRAMs: Trends and perspectives //Non-Volatile Memory Technology Symposium (NVMTS), 2011 11th Annual. – IEEE, 2011. – C. 1-6.
- 2) Cypress Semiconductor Corp.: 8-Mbit (1024 К × 8/512 К × 16) nvSRAM with Real Time Clock [Офиц. сайт]. URL: http://www.cypress.com/file/43506/download (дата обращения 01.03.2018)
- Ko H. K. et al. A novel encapsulation technology for mass-productive 150 nm, 64-mb, 1T1C FRAM //Applications of Ferroelectrics, 2007. ISAF 2007. Sixteenth IEEE International Symposium on. – IEEE, 2007. – C. 25-27.
- Hong Y. K. et al. 130 nm-technology, 0.25 μm 2, 1T1C FRAM Cell for SoC (System-on-a-Chip)-friendly Applications //VLSI Technology, 2007 IEEE Symposium on. – IEEE, 2007. – C. 230-231.
- 5) Kim D. J. et al. Thickness-dependent retention properties in polycrystalline Pb(Zr, Ti)O₃ capacitors thinner than 100 nm //Journal of the Korean Physical Society. 2007. T. 51.
- 6) Красников Г. Я., Орлов О. М. Отличительные особенности и проблемы КМОП-технологии при уменьшении проектной нормы до уровня 0.18 мкм и меньше //Российские нанотехнологии. – 2008. – Т. 3. – С. 124-128.
- Böscke T. S. et al. Ferroelectricity in hafnium oxide thin films //Applied Physics Letters. - 2011. - T. 99. - №. 10. - C. 102903.
- Müller J. et al. Ferroelectric Zr_{0.} 5Hf_{0.} 5O₂ thin films for nonvolatile memory applications //Applied Physics Letters. 2011. T. 99. №. 11. C. 112901.
- Mueller S. et al. Incipient Ferroelectricity in Al-Doped HfO₂ Thin Films //Advanced Functional Materials. – 2012. – T. 22. – №. 11. – C. 2412-2417.
- 10) Рабе К. М., Ана Ч. Г., Трискона Ж. М. Физика сегнетоэлектриков //Современный взгляд. БИНОМ, М. – 2011
- 11) Böscke T. S. et al. Phase transitions in ferroelectric silicon doped hafnium oxide //Applied Physics Letters. – 2011. – T. 99. – №. 11. – C. 112904.
- 12) Park M. H. et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature //Applied Physics Letters. 2013. T. 102. №. 24. C. 242905.
- 13) Yurchuk E. et al. Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films //Thin Solid Films. – 2013. – T. 533. – C. 88-92.
- 14) Lowther J. E. et al. Relative stability of ZrO and HfO structural phases //Physical Review B. – 1999. – T. 60. – №. 21. – C. 14485

SIZE EFFECTS IN HAFNIUM OXIDE THIN FILMS AFTER RAPID THERMAL ANNEALING

A.G.Italyantsev, V.S. Konstantinov

MERI, Zelenograd, Moscow MIPT, Dolgoprudny, Moscow Region

The size effect in Zr-dopped hafnium oxide thin films after RTA was examined. The permanent polarization of the structures with $Hf_{0.5}Zn_{0.5}O_2$ layers of the thickness in the range 10 to 54 nm was measured. It was shown that the permanent polarization decreases by 2.5 times from 16 down to 6 mkC/cm² *Keywords: ferroelectricity, hafnium oxide, size effect*

Об авторах:

ИТАЛЬЯНЦЕВ АЛЕКСАНДР ГЕОРГИЕВИЧ - профессор, доктор физико-математических наук, начальник отдела АО «НИИМЭ» aitalyantsev@niime.ru

КОНСТАНТИНОВ ВЯЧЕСЛАВ СЕРГЕЕВИЧ - аспирант кафедры микро- и наноэлектроники, научный сотрудник АО «НИИМЭ» vkonstantinov@niime.ru

Поступила в редакцию 30 мая 2018 г.