УДК 544.773.42

ВЛИЯНИЕ СТРУКТУРЫ ИОННЫХ ЖИДКОСТЕЙ НА РАЗМЕР КВАНТОВЫХ ТОЧЕК СУЛЬФИДА ЦИНКА

О.Е. Журавлев, Н.И. Кротова, Л.И. Ворончихина

Тверской государственный университет Кафедра органической химии

Авторами предложен метод получения золей наночастиц полупроводника сульфида цинка – «квантовых точек» в среде различных ионных жидкостей – тетрафторбората, сульфата и метилсульфата Nдецилпиридиния. Установлена зависимость размера наночастиц от концентрации прекурсоров. Показано, что из изученных ионных жидкостей использования тетрафторбората N-децилпиридиния наиболее целесообразно для получения наночастиц сульфида цинка.

Ключевые слова: квантовые точки, ионные жидкости, синтез, наночастицы

DOI 10.26456/vtchem2019.1.22

Квантовые точки – это полупроводниковые нанокристаллы с размером в диапазоне 2-10 нанометров, состоящие из 10³ - 10⁵ атомов, созданные на основе неорганических полупроводниковых материалов Si, InP, CdSe, ZnS и т.д., покрытые монослоем стабилизатора.

Уникальные оптические свойства квантовых точек (КТ) делают их перспективным материалом для применения в самых различных областях.

Одними из наиболее перспективных областей применения квантовых точек являются биология и медицина. Так, квантовые точки, как метки или маркеры, присоединенные к биомолекулам и антителам, могут помочь проследить их движение внутри организма, а биологически связанные квантовые точки можно «настроить» на обнаружение биомолекул. [1]

Пик флуоресценции нанокристаллов узок и симметричен, что позволяет надежно выделять сигнал флуоресценции нанокристаллов разных цветов (до десяти цветов в видимом диапазоне). Эти свойства, а также их высокая фотостабильность, делают квантовые точки флуорофорами для многоцветного идеальными спектрального кодирования объектов — подобно штрих-коду, но с использованием многоцветности И «невидимых» кодов, флуоресцирующих в инфракрасной области.[2]

Квантовые точки могут найти применения в оптоэлектрических системах, таких как светоизлучающие диоды и плоские светоизлучающие панели [3-4], лазеры [5], ячейки солнечных батарей и

фотоэлектрических преобразователей, т.е. везде, где требуются варьируемые, перестраиваемые по длине волны оптические свойства.[6]

Целью работы является изучение влияние структуры ионных жидкостей и концентрации прекурсоров на средние размеры наночастиц сульфида цинка в золе.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для синтеза квантовых точек нами был использован так называемый «двойной капельный метод» [7]. Суть данного метода заключается в том, что реагенты в виде растворов с высокой концентрацией вводятся в систему по каплям, при этом происходит их разбавление, за счет образования нерастворимого соединения (наночастиц) реагенты выводятся из реакционного объема, после чего добавляется новая порция реагента. В результате этого, синтез каждой новой порции частиц происходит в одних и тех же условиях при низкой концентрации реагирующих веществ и при этом удается получить высокую концентрацию сульфида цинка в золе.

В качестве реагентов для синтеза наночастиц сульфида цинка использовали свежеприготовленные водные растворы ZnSO₄ и Na₂S с концентрациями 0,1 моль/л. В качестве среды для синтеза наночастиц сульфида цинка использовались растворы ионных жидкостей тетрафторбората сульфата и метилсульфата N-децилпиридиния в смеси ацетона и этилацетата. Ионные жидкости были синтезированы нами из коммерчески доступного хлорида N-децилпиридиния, который был предварительно очищен перекристаллизацией.

Для оценки среднего размера наночастиц полупроводника по величине сдвига края фундаментального поглощения [8] спектральным методом были записаны спектры поглощения в УФ-области золей сульфида цинка. Для этого, во время синтеза наночастиц после очередного добавления прекурсоров (ZnSO₄ и Na₂S) в реакционную среду, отбиралась проба золя, и записывался спектр поглощения в области 200-450 нм (рис.1а). Графически находилась длина волны максимуму поглощения, и рассчитывалось значение энергии E_i из соотношения E=hv. Полученное значение энергии (E_i) использовалось для расчета радиуса R по формуле:

$$\Delta E = E_i - E_g = \frac{\hbar^2 \pi^2}{2R^2} \left[\frac{1}{m_e^* m_0} + \frac{1}{m_h^* m_0} \right]$$

где ΔE - зависимость между шириной запрещенной зоны наночастицы (E_i) и шириной запрещенной зоны массивного кристалла (в случае ZnS E_g= 3.65 эВ); ћ- приведенное значение постоянной Планка (ћ=h/2 π эB*c); m_e^* и m_h^* - эффективные массы электрона в зоне

проводимости и дырок в валентной зоне ($m_e^*=0.34$, $m_h^*=0.5$), m₀ – масса покоя электрона, равная 9.1*10⁻³¹ кг.

Расчет размеров наночастиц полупроводников по приведенной выше формуле возможен только в том случае, если размер частиц не более 35 нм, что соответствует максимуму поглощения в УФ-спектре 340 нм.

Рис. 1. УФ-спектр золя ZnS в среде N-децилпиридиний тетрафторбората (номера систем по таблице 1)

Рис. 2. УФ-спектр золя ZnS в среде N-децилпиридиний метилсульфата (номера систем по таблице 1)

Рис. 3. УФ-спектр золя ZnS в среде N-децилпиридиний сульфата (номера систем по таблице 1)

На рисунках 1-3 представлены спектры поглощения в УФобласти золей сульфида цинка полученного в различных ионных жидкостях. Величина среднего размера наночастиц возрастает с ростом концентрации ZnS в золе, о чем свидетельствует смещения максимумов поглощения золей при увеличении концентрации прекурсоров. Поэтому, можно говорить о доращивании наночастиц при добавлении очередных порций реагентов, осаждении на них дополнительного сульфида цинка как на зародышах. С другой стороны, рост размера относительно не велик, т.е. вероятнее всего одновременно происходит образование и рост новых частиц.

В таблице 1 представлены рассчитанные по вышеописанной формуле средние размеры наночастиц В полученных золях. Наибольший разброс в средних размерах наночастиц ZnS (2-12 нм) наблюдается при использовании N-децилпиридиний сульфата (табл. 1, системы 9 – 11). Поскольку в структуре изученных ионных жидкостей варьируется только анион, то можно предположить, что именно он оказывает наибольшее влияние, при прочих равных условиях на размеры наночастиц в золе. В соответствии с правилом Шульце-Гарди, стабилизация золя сульфида цинка в среде ионной жидкости - сульфата N-децилпиридиния будет происходит значительно хуже, т.к. двухзарядный анион SO_4^{-2} проявляет большую коагулирующую способность, по сравнению с однозарядными анионами BF_4^- и $CH_3SO_3^-$. Поэтому синтез наночастиц сульфида цинка в среде ионной жидкости сульфата N- децилпиридиния будет затруднен, поскольку наночастицы сульфид цинка будут подвергаться коагуляции и образовывать более крупные частицы, которые в значительной степени подвергаются седиментации и как следствие происходит разрушение золя. Сравнивая ионные жидкости с однозарядными анионами метилсульфат N-децилпиридиния и тетрафторборат N- децилпиридиния, можно прогнозировать более высокую стабилизирующую способность в среде ионной жидкости метилсульфата N- децилпиридиния, из-за наличия более объемного аниона $CH_3SO_3^-$, который будет препятствовать коагуляции золя сульфида цинка.

Исследование влияния аниона на размеры наночастиц сульфида цинка показало, что теоретические предположения достаточно хорошо согласуются с данными по размеру наночастиц, полученными методом УФ-спектроскопии. Однако выяснилось, что при использовании метилсульфата N- децилпиридиния повысилась дисперсия среднего размера наночастиц, что отрицательно сказывается на характеристиках квантовых точек сульфида цинка.

Таблица 1

Nº ⊓/⊓	$C_{\rm M}$ (ZnS)*10 ³ ,	λ _{max} , нм	d, нм
11/11	MOJIE/ JI	Y 1	- F
N-децилпиридинии тетрафтороорат			
1	1,92	322	5,9
2	3,70	324	6,3
3	5,35	324	6,3
4	6,98	326	6,7
N-децилпиридиний метилсульфат			
5	1,92	303	4,0
6	5,35	320	5,6
7	6,98	319	5,5
8	29,5	324	6,3
N-децилпиридиний сульфат			
9	1,92	232, 242,	2,1; 2,2; 3,0;
		277, 284, 293	3,2; 3,5
10	3,70	306	4,3
11	6,98	303, 328, 336	4,1;7,3,12,2

Концентрации наночастиц в золях, максимумы поглощения в УФ-спектрах, средние размеры наночастиц, полученных в ионных жидкостях

Из таблицы 1 видно, что наименьшей дисперсии среднего размера удается добиться, в случае использования тетрафторбората Nдецилпиридиния (табл.1, системы 1-4), но концентрация наночастиц сульфида цинка в этом случае будет на порядок меньше, по сравнению с метилсульфатом N-децилпиридиния. Несмотря на то, что В метилсульфате N-децилпиридиния удается добиться сравнительно высокой концентрации сульфида цинка (табл. 1., система 8), по сравнению с тетрафторборатом N- децилпиридиния, предпочтение остается за последней ионной жидкостью, т.к. в ее среде удается добиться наиболее однородных по размеру наночасти. В тех случаях, когда требуется достичь наибольшей концентрации наночастиц сульфида цинка в золе, целесообразнее использовать метилсульфат Nдецилпиридиния.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК-спектры записывали на Фурье спектрометре ALPHA в тонкой пленке. Образец помещался между стеклами из KBr. Спектры золей сульфида цинка в УФ-области записывали на спектрофотометре СФ-56 (Ломо), толщина оптического слоя 1 см. Элементный анализ выполнялся на анализаторе Perkin Elmer CHNS/O PE 2400-II.

В плоскодонной колбе объемом 100 мл растворяют при нагревании в минимальном количестве воды 0,02 моль (5,1г) Nдецилпиридиний хлорида. Затем, по каплям при перемешивании добавляют эквимолярное количество тетрафторбората натрия (NaBF₄). В результате реакции образуются 2 фазы: верхняя – водный раствор NaCl, нижняя – ионная жидкость. Фазы разделяют на делительной воронке. Ионную жидкость промывают водой, затем сушат в вакууме в течении 24 час. Полученный тетрафторборат N-децилпиридиния после осушки представляет собой прозрачные кристаллы, плохо растворимые в воде, хорошо растворимые в полярных органических растворителях (спирт, ацетон, ацетонитрил и т.д.). В работе полученная ионная жидкость использовалась без дополнительной очистки. Состав и структура подтверждены данными элементного анализа и ИКспектроскопией.

Выход 93%. Элементный анализ C₁₅H₂₆NBF₄,%: найдено С 58.6 H 8.5 N 4.7 вычислено С 58.6 H 8.9 N 4.6

ИК (КВг) v, см⁻¹: (С-Н_{ар}) 3045, (С-Н_{алиф}) 2978, 2843, (С-С_{ар}) 1490, 1473, $\delta_{\text{C-Налиф}}$ 721, 684.

Метилсульфат N-децилпиридиния

$$\left[\underbrace{ \bigvee_{n}^{+}(CH_2)_9CH_3}_{-NaCl} \right] Cl^{-} \xrightarrow{+CH_3SO_3ONa}_{-NaCl} \left[\underbrace{ \bigvee_{n}^{+}(CH_2)_9CH_3}_{-NaCl} \right] CH_3OSO_3^{-}$$

В плоскодонной колбе объемом 100 мл растворяли при нагревании в минимальном количестве воды 0.02 моль (5r) децилпиридиний хлорида. Затем, по каплям при перемешивании добавляли эквимолярное количество метилсульфата натрия (CH₃SO₃ONa). В результате реакции образуются 2 фазы: верхняя – водный раствор NaCl, нижняя – ионная жидкость. Фазы разделяют на делительной воронке. Продукт промывают водой. Высушивают в течении 24 час. Полученный метилсульфат вакууме В Nдецилпиридиния после осушки представляет собой светло-желтую аморфную массу, плохо растворимую в воде, хорошо растворимую в полярных органических растворителях (спирт, ацетон, ацетонитрил и т.д.). Состав и структура подтверждены данными ИК-спектроскопии, элементного анализа и тонкослойной хроматографии.

Выход 3.61 г (54%). ИК спектр, ν, см⁻¹: 3055 (C-H_{ap}), 2930, 2848 (C-H_{алиф}), 1485, 1460 (C-C_{ap}), 1084 (SO₃⁻²) 773, 689 (δ_{C-Hалиф}).

Найдено, %: С 58,25; Н 10,24; N 4,54. С₁₅H₂₆CH₃SO₃. Вычислено, %: С 58,01; Н 8.76; N 4.23. Определено R_f (ацетон/ацетонитрил 1:1) 0,68.

Сульфат N-децилпиридиния

К раствору сульфата серебра (2.12 г) в 200 мл воды предварительно разогретом до 80°С (для полного растворения Ag₂SO₄) при тщательном перемешивании добавляли раствор N-децилпиридиний хлорида (3.73 г) в воде (10 мл). Реакционную смесь перемешивали при комнатной температуре в течение 3-х часов при нагревании. Осадок AgCl отфильтровывали, полученный фильтрат упаривали на ротационном испарителе. Сушили в вакууме в течение 1 суток. Продукт – светло-жёлтая аморфная масса.

Выход 3.47 г (95%). т. пл. 107-109°С. ИК спектр, v, см⁻¹: 3062 (С-Нар), 2925, 2855 (С-Налиф), 1583, 1489, 1457 (С-Сар), 1083 (SO4²⁻), 780, 689 ($\delta_{C-Налиф}$).

Найдено, %: С 66.4; Н 10.5; N 5.2. С₃₀Н₅₂N₂O₄S. Вычислено, %: С 67.2; Н 9.7; N 5.2.

Синтез наночастиц сульфида цинка в среде ионной жидкости В пробирку помещают 1,5 г свежеприготовленной ионной жидкости, которую растворяют в смеси состоящей из 1,5 мл ацетона и 1 мл

этилацетата. Затем в данную смесь по каплям при перемешивании одновременно приливают свежеприготовленные 0,1М растворы сульфата цинка и сульфида натрия. После каждого прибавления прекурсоров определяют размер наночастиц в золе методом УФ-спектроскопии.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-33-00890.

Список литературы

- А.А. Ремпель // Вестник Уральского отделения РАН. 2010. 2(32), С. 45– 51.
- Han M., Gao X., Su J.Z., Nie S. (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. *Nat. Biotechnol.* 19, 631–635
- 3. http://optics.org/news/3/6/9
- 4. http://www.techweekeurope.co.uk/news/quantum-dots-pave-way-for-flexibledisplays-49352
- V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.-J. Eisler, M.G. Bawendi. // Science. 2000. V.290. P. 314 – 317.
- 6. Васильев Р.Б., Дирин Д.Н. «Квантовые точки: синтез, свойства и применение» Методические материалы, МГУ, Москва, 2007.
- Щерба Т.Н. Наночастицы сульфида цинка: синтез, модифицирование поверхности, оптические свойства: диссертация кандидата химических наук. М., МГУ, 2011. 142 с.
- 8. LiZ., WangJ., XuX., YeX. // Materials Letters. V.62. 2008. P. 3862-3864.

EFFECT OF THE STRUCTURE OF IONIC FLUIDS ON THE SIZE OF QUANTUM DOTS OF ZINC SULFIDE

O.E. Zhuravlev, N.I. Krotova, L.I. Voronchikhina

Tver State University Chair of organic chemistry

The authors proposed a method for obtaining sols of nanoparticles of zinc sulfide semiconductor - "quantum dots" in the solutions of various ionic liquids - tetrafluoroborate, sulfate and methyl sulfate N-decylpyridinium. The dependence of the nanoparticle size on the concentration of precursors was established. It has been shown that of the studied ionic liquids, the use of N-decylpyridinium tetrafluoroborate is most appropriate for the preparation of zinc sulfide nanoparticles.

Keywords: quantum dots, ionic liquids, synthesis, nanoparticles.

Об авторах:

ЖУРАВЛЕВ Олег Евгеньевич – доцент, кандидат химических наук, доцент кафедры органической химии химико-технологического факультета ТвГУ, e-mail: <u>pifchem@mail.ru</u>.

КРОТОВА Наталья Ивановна – аспирантка кафедры органической химии химико-технологического факультета ТвГУ, e-mail: <u>Krotova.NI@tversu.ru</u>.

ВОРОНЧИХИНА Людмила Ивановна – профессор, доктор химических наук, зав. кафедрой органической химии химико-технологического факультета ТвГУ, e-mail: <u>katerina2410@mail.ru.</u>

Поступила в редакцию 1 февраля 2019 года