ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 544.773.42 DOI 10.26456/vtchem2020.1.12

ВЛИЯНИЕ КОНЦЕНТРАЦИИ И ПРИРОДЫ ИОННЫХ ЖИДКОСТЕЙ НА РАЗМЕР КВАНТОВЫХ ТОЧЕК СУЛЬФИДА ЦИНКА

О.Е. Журавлев, Ю.Н. Травников, Л.И. Ворончихина

ФГБОУ ВО «Тверской государственный университет» г. Тверь

Авторами предложен метод получения золей наночастиц полупроводника сульфида цинка — «квантовых точек» с использованием ионных жидкостей — тетрафторбората и гексафторфосфата N-додецилпиридиния в растворе ацетонитрила. Установлена зависимость размера наночастиц от концентрации прекурсоров. Показано, что из изученных ионных жидкостей использования гексафторфосфата N-децилпиридиния с концентрацией 20% в ацетонитриле наиболее целесообразно для получения наночастиц сульфида цинка.

Ключевые слова: квантовые точки, ионные жидкости, синтез, наночастицы

Сульфид цинка относится к наиболее распространенным и хорошо известные полупроводниковым материалам, которые излучают в видимой области спектра при оптическом или электрическом возбуждении. Интерес к таким соединениям постоянно растет на протяжении последних двух десятилетии из-за изучения называемых квантовых точек, то есть наноразмерных кристаллов, обладающие уникальными оптическими свойствами. Существуют различные методы для получения квантовой точек. Например, между органометаллическими взаимодействие соединениями растворителях [1,2],органических обменные реакции неорганическими солями в водных растворах [3,4] или с помощью обратных мицелл [5,6]. Квантовые точки, полученные этими методами полупроводниковые наночастицы, покрытые оболочкой органических молекул, присутствующих В реакционной среде. Модификаторы поверхности обычно выполняют функции: ограничить рост частиц и предотвратить их агрегацию и коагуляцию. Кроме того, они могут влиять на оптические свойства наночастиц.

Мы ранее [7] сообщали, что при использовании в качестве среды для синтеза наночастиц сульфида цинка ионных жидкостей, возможно

получение наночастиц с дисперсией среднего размера не более 10%, а также высокую устойчивость полученных золей к агрегации.

В настоящей работе проведено исследование влияния концентрации и природы ионных жидкостей на размеры наночастиц сульфида цинка в золях.

Результаты и их обсуждение

Для синтеза квантовых точек нами был использован так называемый «двойной капельный метод» [8]. Суть данного метода заключается в том, что реагенты в виде растворов с высокой концентрацией вводятся в систему по каплям, при этом происходит их разбавление, за счет образования нерастворимого соединения (наночастиц) реагенты выводятся из реакционного объема, после чего добавляется новая порция реагента. В результате этого, синтез каждой новой порции частиц происходит в одних и тех же условиях при низкой концентрации реагирующих веществ и при этом удается получить высокую концентрацию сульфида цинка в золе.

Для оценки среднего размера наночастиц полупроводника по величине сдвига края фундаментального поглощения [9] спектральным методом были записаны спектры поглощения в УФ-области золей сульфида цинка. Для этого, во время синтеза наночастиц после очередного добавления прекурсоров (ZnSO₄ и Na₂S) в реакционную среду, отбиралась проба золя, и записывался спектр поглощения в области 200-450 нм (рис.1-2). Графически находились длины волн поглощения, и рассчитывалось значение энергии E_i из соотношения E=hv. Полученное значение энергии (E_i) использовалось для расчета радиуса R по формуле:

$$\Delta E = E_i - E_g = \frac{\hbar^2 \pi^2}{2R^2} \left[\frac{1}{m_e^* m_0} + \frac{1}{m_h^* m_0} \right]$$

где ΔE - зависимость между шириной запрещенной зоны наночастицы (E_i) и шириной запрещенной зоны массивного кристалла (в случае ZnS E_g= 3.65 эВ); ħ- приведенное значение постоянной Планка (\hbar = $h/2\pi$ эВ*c); m_e^* и m_h^* - эффективные массы электрона в зоне проводимости и дырок в валентной зоне (m_e^* =0.34, m_h^* =0.5), m_0 – масса покоя электрона, равная $9.1*10^{-31}$ кг.

Расчет размеров наночастиц полупроводников по приведенной выше формуле возможен только в том случае, если размер частиц не более 35 нм, что соответствует максимуму поглощения в УФ-спектре 340 нм.

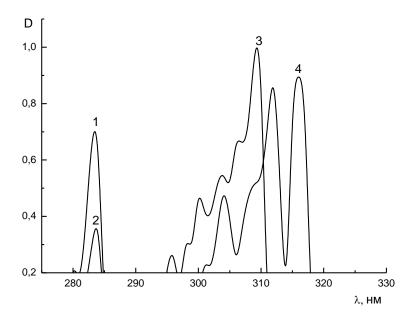


Рис. 1. УФ-спектр золя ZnS в 10%-ном растворе N-додецилпиридиний тетрафторбората (номера систем по таблице 1)

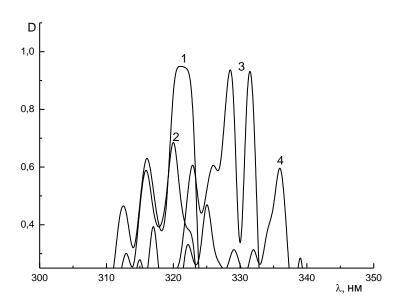


Рис. 2. УФ-спектр золя ZnS в 20%-ном растворе N-додецилпиридиний тетрафторбората (номера систем по таблице 1)

На рисунках 1-2 представлены спектры поглощения в УФобласти золей сульфида цинка полученных с помощью тетрафторбората N-додецилпиридиния с концентрациями ионной жидкости 10 и 20% в ацетонитриле. Для золей сульфида цинка полученных в растворах гексафторфосфата N-додецилпиридиния также были записаны УФспектры поглощения. Величина среднего размера наночастиц возрастает с ростом концентрации ZnS в золе, о чем свидетельствует смещения полос поглощения в спектре при увеличении концентрации прекурсоров. Поэтому, можно говорить о доращивании наночастиц при добавлении очередных порций реагентов, осаждении на них дополнительного сульфида цинка как на зародышах. С другой стороны, рост размера относительно не велик, т.е. вероятнее всего одновременно происходит образование и рост новых частиц, на что указывает увеличение интенсивности поглощения.

В таблице 1 представлены рассчитанные по вышеописанной формуле средние размеры наночастиц N-додецилпиридиний тетрафторбората. При низких концентрациях прекурсоров наблюдается образование преимущественно частиц одинакового размера. При увеличении концентрации прекурсоров происходи рост размеров наночастиц сульфида цинка в золе и наблюдается полидисперсность золей, на что указывает появление в УФ-спектрах нескольких полос поглощения. В 10%-ных растворах Nдодецилпиридиний тетрафторбората размер частиц В концентрационном диапазоне составляет от 3 до 10 нм. В 20%-ных растворах N-додецилпиридиний тетрафторбората уже при низких концентрациях образуются полидисперсные золи, и размеры наночастиц сульфида цинка лежит в диапазоне от 5 до 21 нм.

Таблица 1 Влияние концентрации реагентов на размер наночастиц ZnS в 10 и 20%-ном растворе N-додецилпиридиний тетрафторбората

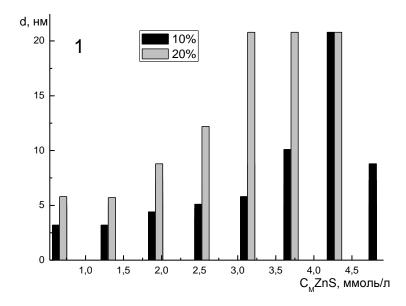
№	$C_{\scriptscriptstyle m M} [{ m ZnSO_4}] = \ [{ m Na_2S}], { m ммоль}/{ m л}$	λ, нм	d, нм		
10%-ный раствор в ацетонитриле					
1	0,66	283	3,2		
2	1,3	283	3,2		
3	1,92	300 304 306 309	3,9 4,1 4,2 4,4		
4	2,53	300 312	3,9 4,7		

Вестник ТвГУ. Серия "Химия". 2020. № 1 (39).

		316	5,1		
		297	3,7		
5		302	4		
	3,13	308	4,4		
	3,13	312	4,4 4,7 5,1		
		316	5,1		
		321	5,8 5,1		
	3,70	316	5,1		
6		327	7		
		330	4,9		
		334	10,1		
7	4,27	339	20,8		
0	4,82	316	5,1		
8		328	7,3		
		332	8,8		
20%-ный раствор в ацетонитриле					
		313	4,7		
1	0,66	316	5,1		
		321	5,8		
2	1,3	316	5,1		
2		320	5,7		
	1,92	317	5,2		
3		323	6,1		
		328	7,3		
		332	8,8 6,5		
4	2,53	325	6,5		
-	2,55	336	12,2		
5	3,13	332	8,8		
		339	20,8		
6	3,70	339	20,8		
7	4,27	339	20,8		

При использовании в качестве среды для получения золей сульфида цинка гексафторфосфата N-додецилпиридиния наблюдается иная зависимость (табл.2). Как при концентрации 10% так и в 20%-ных растворах размер наночастиц сульфида цинка лежит в очень узком диапазоне от 3 до 4 нм. Полидисперстность систем минимальна. В случае 20%-ного раствора гексафторфосфата N-додецилпиридиния системы практически монодисперсные. Низкая полидисперсность золей может быть вызвана наличием в молекулярной структуре ионных

жидкостей неких упорядоченных структур (домены, цепочки и др.). При введении прекурсоров ($ZnSO_4$ и Na_2S) в ионную жидкость взаимодействие между ионами Zn^{2+} и S^{2-} происходит преимущественно в полярных областях (доменах) молекулярной структуры ионной жидкости. Протекание реакции в таких областях приводит к тому, что рост наночастиц образующегося ZnS ограничен размерами этих доменов. Кроме того, В ЭТИХ условиях сильно затруднено взаимодействие наночастиц друг с другом, и как следствие наблюдается низкая дисперсия размеров наночастиц. Также стабилизирующее действие на золи может оказывать адсорбция молекул ионной жидкости поверхности наночастиц, создавая тем самым адсорбционную оболочку, которая также препятствует сближению и агрегированию частиц. Низкую полидисперсность использовании гексафторфосфата N-додецилпиридиния в сравнении с по-видимому, тетрафторборатом, онжом объяснить что гексафторфосфат-анион образует более устойчивую структуру с органическим катионом ионной жидкости в растворе, за счет образования большего количества водородных связей с атомами водорода катиона. За счет этого, пространственная структура (домены) в растворе более прочные и имеют примерно одинаковые размеры.


Таблица 2 Влияние концентрации реагентов на размер наночастиц ZnS в 10 и 20%-ном растворе N-додецилпиридиний гексафторфосфата

№ п/п	$C_{\scriptscriptstyle{ m M}}\left[{ m ZnSO_4} ight] = \ \left[{ m Na_2S} ight], { m ммоль/л}$	λ, нм	d, нм		
10%-ный раствор в ацетонитриле					
1	0,79	290	3,4		
		292	3,5		
2	1,55	294	3,6		
		296	3,7		
3	2,29	294	3,6		
		296	3,7		
		287	3,3		
4	3,01	289	3,7		
		292	3,5		
5	3,7	291	3,4		

Вестник ТвГУ. Серия "Химия". 2020. № 1 (39).

6	4,38	286 289 291	3,3 3,4 3,5		
7	5,04	288	3,3		
20%-ный раствор в ацетонитриле					
1	0,79	287	3,3		
2	1,55	287	3,3		
3	2,29	288	3,4		
4	3,01	292	3,5		
5	3,7	297	3,7		
6	4,38	297	3,7		
7	5,04	304	4,1		

Результатом анализа полученных данных является распределение наночастиц по размеров в зависимости от концентрации прекурсоров и концентрации ионной жидкости в растворе (рис. 3). При увеличении концентрации N-додецилпиридиний гексафторфосфата, наблюдается минимальный рост размеров наночастиц в сравнении с тетрафторборатом N-додецилпиридиния.

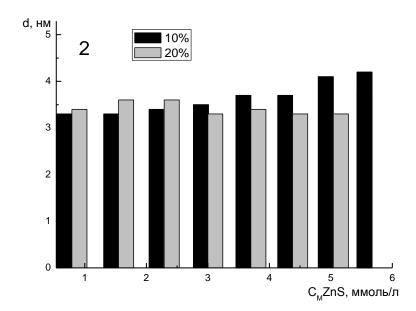


Рис. 3. Зависимость размеров наночастиц сульфида цинка от концентрации ионной жидкости в растворе ацетонитрила: 1- тетрафторборат N-додецилпиридиния; 2- гексафторфосфат N-додецилпиридиния.

Таким образом, для получения наночастиц сульфида цинка с минимальным отклонением размеров наночастиц целесообразно использование 20%-ного раствора ионной жидкости — гексафторфосфата N-додецилпиридиния в ацетонитриле.

Экспериментальная часть

Для получения наночастиц сульфида цинка использовали $ZnSO_4*7H_2O$ (ч.д.а.) и Na_2S*9H_2O (ч.д.а.). В качестве среды для синтеза использовались 10 и 20%-ные растворы ионных жидкостей в ацетонитриле. При постоянном перемешивании одновременно по каплям вводили прекурсоры -0.1~M свежеприготовленные растворы $ZnSO_4~u~Na_2S$. Через 5 мин отбирали пробу золя, и определяли размер наночастиц методом УФ-спектроскопии

ИК-спектры записывали на Фурье спектрометре ALPHA в тонкой пленке. Образец помещался между стеклами из КВг. Спектры золей сульфида цинка в УФ-области записывали на спектрофотометре СФ-56 (Ломо), толщина оптического слоя 1 см. Элементный анализ выполнялся на анализаторе Perkin Elmer CHNS/O PE 2400-II.

Тетрафторборат N-додецилпиридиния

$$\begin{bmatrix} & & & & \\$$

В плоскодонной колбе объемом 100 мл растворяют при нагревании в минимальном количестве воды 0,02 моль N-додецилпиридиний бромида. Затем, по каплям при перемешивании добавляют эквимолярное количество тетрафторбората натрия (NaBF₄). В результате реакции образуются 2 фазы: верхняя — водный раствор NaCl, нижняя — ионная жидкость. Фазы разделяют на делительной воронке. Ионную жидкость промывают водой, затем сушат в вакууме в течении 24 час. Полученный тетрафторборат N-децилпиридиния после осушки представляет собой прозрачные кристаллы, плохо растворимые в воде, хорошо растворимые в полярных органических растворителях (спирт, ацетон, ацетонитрил и т.д.). В работе полученная ионная жидкость использовалась без дополнительной очистки. Состав и структура подтверждены данными элементного анализа и ИКспектроскопией.

Выход 88%. Элементный анализ $C_{17}H_{30}NBF_4$,%: найдено C 60,7 H 9,1 N 4,1 вычислено C 60,9 H 8,9 N 4,2

ИК (KBr) v, см⁻¹: (C-H_{ар}) 3034, (C-H_{алиф}) 2981, 2853, (C-C_{ар}) 1478, 1533, $\delta_{\text{C-Налиф}}$ 711, 680, (BF₄) 1055.

Гексафторфосфат N-додецилпиридиния

В плоскодонной колбе емкостью 100 мл растворяли в количестве воды 0.01 моль бромида Nминимальном додецилпиридиния. Затем, по каплям при перемешивании добавляли эквимолярное количество водного раствора гексафторофосфорной кислоты (HPF₆, ρ =1.75г/см³, W=60%). В результате реакции образуются 2 фазы: верхняя – водный раствор HCl, нижняя – ионная жидкость. Фазы разделяли на делительной воронке. Ионную жидкость несколько раз промывали водой. Высушивали в вакууме в течение 24 час.

Выход 91%. Элементный анализ $C_{17}H_{30}NPF_6$ %: найдено С 51,7 H 7,9; N 3,5 вычислено, %: С 51,9 H 7,6 N 3,6.

ИК (KBr) v, см $^{-1}$: 3041 (C-H_{ар}), 2941, 2859 (C-H_{алиф}), 1458, 1540 (C-C_{ар}), 847 (PF₆) 773, 689 (δ _{C-Налиф}).

Синтез наночастиц сульфида цинка в среде ионной жидкости

Готовили 10 и 20%-ные растворы ионных жидкостей в ацетонитриле. К 3 мл раствора по каплям при перемешивании одновременно приливают свежеприготовленные 0,1М растворы сульфата цинка и сульфида натрия. После каждого прибавления прекурсоров определяют размер наночастиц в золе методом УФспектроскопии.

Исследование выполнено при финансовой поддержке $P\Phi\Phi U$ в рамках научного проекта N 18-33-00890.

Список литературы

- 1. Murray C.B., Norris D.J., Bawendi M.G. // J. Am. Chem. Soc., 1993. V. 115. P. 8706.
- 2. Li X., Sun S., Yu H., Znang W., Fan W., Yang Y. // J. Mater. Sci., 2004. V. 39. P. 659.
- 3. Kho R., Torres-Martinez C.L., Mehra R.K. // J. Colloid Interface Sci. 2000. V. 227. P. 561.
- 4. Li Y., Ding Y., Zhang Y., Qian Y. // J. Phys. Chem. Solids. 1999. V. 60. P. 13.
- 5. Turco Liveri V., Rossi M., Arrigo G.D., Manno D., Micocci G. // Appl. Phys. A. 1999. V. 69. P. 369.
- 6. Calandra P., Longo A., Turco Liveri V. // J. Phys. Chem. B. 2003. V. 107. P. 25.

- 7. Журавлев О.Е., Пресняков И.А., Ворончихина Л.И. // ЖПХ. 2015. Т.88. № 6. С. 848-854. [Zhuravlev O.E., Presnyakov I.A., Voronchikhina L.I. // Russ. J. Appl. Chem. 2015. V. 88. N 6. P. 914-920.]
- 8. Щерба Т.Н. Наночастицы сульфида цинка: синтез, модифицирование поверхности, оптические свойства: диссертация кандидата химических наук. М., МГУ, 2011. 142 с.
- 9. LiZ., Wang J., XuX., YeX. The evolution of optical properties during Hydrothermal coarsening of ZnS nanoparticles // Materials Letters. V.62. 2008. P. 3862-3864.

Об авторах:

ЖУРАВЛЕВ Олег Евгеньевич – доцент, кандидат химических наук, доцент кафедры органической химии химико-технологического факультета ФГБОУ ВО «Тверской государственный университет», e-mail: pifchem@mail.ru

ТРАВНИКОВ Юрий Николаевич — магистрант 2 года кафедры органической химии химико-технологического факультета ФГБОУ ВО «Тверской государственный университет»,.

ВОРОНЧИХИНА Людмила Ивановна – профессор, доктор химических наук, зав. кафедрой органической химии химико-технологического факультета ФГБОУ ВО «Тверской государственный университет»,, e-mail: Voronchikhina.LI@tversu.ru

INFLUENCE OF THE CONCENTRATION AND NATURE OF IONIC LIQUIDS ON THE SIZE OF QUANTUM DOTS OF ZINC SULFIDE

O.E. Zhuravlev, Yu.N. Travnikov, L.I. Voronchikhina

Tver State University Chair of organic chemistry

The authors proposed a method for obtain sols of zinc sulfide semiconductor nanoparticles - "quantum dots" using ionic liquids - tetrafluoroborate and hexafluorophosphate N-dodecylpyridinium in acetonitrile solution. The dependence of the size of nanoparticles on the concentration of precursors is established. It is shown, that the studied ionic liquids, the use of N-decylpyridinium hexafluorophosphate with a concentration of 20% in acetonitrile is most suitable for the preparation of zinc sulfide nanoparticles.

Keywords: quantum dots, ionic liquids, synthesis, nanoparticles.