АГРОХИМИЯ

УДК 541.49:581.1 DOI 10.26456/vtchem2020.2.18

СТИМУЛИРУЮЩЕЕ ДЕЙСТВИЕ БОРОСОДЕРЖАЩИХ ХЕЛАТНЫХ КОМПЛЕКСОВ НА ЛЁН-ДОЛГУНЕЦ

А.А. Петрова¹, Т.И. Смирнова², М.Н. Павлов², А.А. Варламова³, В.М., Никольский³

¹ ФГБНУ ФНЦ Лубяных культур, г. Тверь ²ФГБОУ ВО Тверская государственная сельскохозяйственная академия, г. Тверь ³ ФГБОУ ВО Тверской государственный университет, г. Тверь

На растениях льна-долгунца в условиях полевого опыта исследовано биостимулирующее действие борат-иминодисукцината (В-ИДЯК) и борат-этилендиаминдисукцината (В-ЭДДЯК) в сравнении с борной кислотой и борат-этилендиаминтетраацетатом (В-ЭДТУК). Обнаружено, что наиболее активным биостимулятором является В-ЭДДЯК. Обработка растений льна раствором В-ЭДДЯК увеличивает не только урожайность льносоломы и семян, но и улучшает физико-химические свойства льноволокна.

Ключевые слова: бор, комплексоны, хелатные комплексы, биостимулирующее действие, лён-долгунец.

Одной из наиболее перспективных областей практического применения боросодержащих хелатных комплексов на основе коплексонов, производных янтарной кислоты: иминодиянтарной кислоты (ИДЯК) и этилендиаминдиянтарной кислоты (ЭДДЯК), является растениеводство, поскольку микроэлемент бор, потребляется растениями по сравнению с другими микроэлементами в существенно больших количествах. Известно, что микроэлементы лучше всего усваиваются растительными организмами в форме комплексонатов [Ошибка! Источник ссылки не найден.-3], причем их устойчивость не должна быть слишком высокой. Этому требованию соответствуют боратные комплексы на основе ИДЯК и ЭДДЯК: В-ИДЯК и В-ЭДДЯК, соответственно [4,5].

Микроэлемент бор необходим растениям для роста, развития, осуществления углеводного обмена. Этот элемент образует комплексные соединения с пектиновыми веществами, обеспечивающими эластичность клеточных стенок, участвует в растяжении и делении клеток, влияя тем самым на рост растения. Бор

задействован В процессе фотосинтеза через формирование трансмембранного потенциала тилакоидов; он оказывает влияние на азотистых оснований, входящих в состав нуклеиновых кислот и коферментов НАД и НАДФ [7], в образовании фенольных производных, в том числе и биофлавоноидов. К числу растений, в наибольшей степени нуждающихся в соединениях бора, относится лён. По этой причине в качестве опытного растения в представленном исследовании был использован лён-долгунец. Лён относится к числу важнейших прядильных культур. Волокно льна в два раза крепче хлопкового волокна и в три раза шерстяного. Из него получают самые разнообразные бытовые, технические, тарные и упаковочные ткани. Льняные ткани отличаются длительным использованием и противостоят гниению. Семена льна содержат хорошо высыхающее масло (35-42% массы семян), имеющее большую ценность при изготовлении красок, лаков, олифы. Льняное масло широко применяется в мыловаренной, бумажной, электротехнической и других отраслях промышленности, а также в медицине и парфюмерии. Часть его используется в пищу как продукт диетического питания. При переработке тресты на волокно получают короткое прядомое волокно (кудель), которое используется для выработки мешочных и упаковочных тканей, а также непрядомое волокно (паклю), используемое на изготовление веревок, шпагата или как конопаточный материал. Костра (древесина стеблей) служит сырьем для получения картона, ценных органических соединений (метилового и этилового спиртов, уксусной кислоты, ацетона) [7].

Целью исследования был синтез боратных комплексов В-ИДЯК и В-ЭДДЯК и сравнение их биологической активности с аналогичными характеристиками борной кислоты и боратного комплекса традиционного комплексона этилендиаминтетрауксусной кислоты – В-ЭДТУК.

Материалы и методы

Синтез всех комплексонатов осуществляли по методике, изложенной в [8]. Исследования проводили в 2019 г. в однофакторном полевом опыте. Почва - дерново-среднеподзолистая остаточно карбонатная глееватая на морене, супесчаная по гранулометрическому составу, хорошо окультурена. Мощность пахотного горизонта 20-22 см, содержание гумуса 2,3 % (по Тюрину), легкогидролизуемого азота 100 мг/кг (по Корнфилду), P_2O_5 - 230 и K_2O - 110 мг/кг (по Кирсанову), $pH_{\text{сол.}}$ 5,6.

Поскольку бор в растениях не утилизируется, и при дефиците бора в максимальной степени страдают верхние части растений, как наиболее рациональный способ внесения препаратов, подтверждённый

предыдущими опытами, была избрана внекорневая обработка растворами испытуемых боросодержащих соединений [9].

Концентрация растворов, использованных для внекорневой обработки льна, составляла $0{,}002$ моль/л. Опрыскивание проводили из расчёта 100 мл/м^2 .

Схема опыта: 1) контроль (вода); 2) H_3BO_3 ; 3) B-ЭДТУК; 4) B-ЭДДЯК; 5) B-ИДЯК.

Площадь учетной делянки -4 м^2 . Площадь под опытом $-80 \text{ м}.^2$ Повторность в опыте четырёхкратная. Общая площадь посева льнадолгунца -1га. Объект исследований - лён-долгунец сорта Надежда, рекомендованный к использованию по Тверской области.

Агротехника — традиционная для возделывания льна. Предшественник — зерновые. Под предпосевную культивацию вносили нитроаммофоску в дозе 1 ц/га. Внекорневая подкормка растений льна боросодержащими соединениями проводилась в фазу быстрого роста, согласно схеме опыта. Урожайность определяли путем взвешивания растений и семян с учетной площади делянки, пересчитывали и определяли среднее значение. Провели дисперсионный анализ урожайных данных. Исследования проводили по существующим в земледелии и растениеводстве методикам [10].

Результаты и их обсуждение

Фенологические наблюдения выявили положительное влияние внекорневой боросодержащими подкормки комплексами прохождение фаз развития растений льна во второй половине вегетации. Подкормка растений боросодержащими соединениями вызывала ускоренное на 1-2 дня цветение по сравнению с контролем. Желтая спелость на опытных вариантах наблюдалась на 1-3 дня позднее, что способствовало повышению урожайности семян льна. боросодержащими препаратами оказало Внесение подкормки положительное влияние на густоту стояния растений льна перед уборкой. Анализ сохранности растений льна-долгунца показал, что применение боросодержащих соединений увеличило этот показатель на 3.8- 4,7% по сравнению с контролем.

Продуктивность агроценоза льна-долгунца оценивали по сбору с гектара льносоломы и семян. Оба эти показателя представляют производственную ценность, так как имеют хозяйственное значение. На формирование высокой продуктивности льна большое влияние оказывает густота стояния растений перед уборкой. Сохранение густоты стояния растений вместе с ростом продуктивности коробочек оказало положительное влияние на урожайность семян льна.

Анализ урожайности (табл. 1) свидетельствует о том, что обработка растворами боросодержащих соединений способствовала

росту урожайности льна-долгунца. Наши исследования показали, что внекорневая подкормка растений повышала продуктивность льнадолгунца по сравнению с контролем во всех четырёх вариантах опыта. Применение боросодержащих соединений способствовало получению прибавки урожая льносоломы (стеблей льна после удаления семенных коробочек) 8-15.2%, причём максимальный прирост выхода на льносоломы – в варианте с обработкой раствором В-ЭДДЯК (5.9 ц/га или 15,2% к контролю). Более существенная в процентном отношении прибавка получена по семенам от 26.4% до 55.9% – в варианте с обработкой раствором В-ЭДДЯК. Немного меньший, но также весьма значительный результат (+50.0%), получен в варианте с В-ИДЯК. Повидимому, в растениях льна соединения бора в большей степени, чем в других растениях, интенсифицируют процесс фотосинтеза, а поскольку комплексонаты легче проникают через клеточные мембраны, то и стимулирующий эффект оказывается более значительным. Меньшая прибавка к урожаю льносоломы и семян в варианте с В-ЭДТУК по сравнению с вариантами, где использовали боратные комплексы на основе комплексонов, производных янтарной кислоты, вероятно, объясняется тем, что наряду с облегчением транспорта бора растительные клетки это соединение вызывает и неблагоприятные сдвиги внутриклеточного металлолигандного гомеостаза.

Таблица 1 Влияние внекорневой обработки растворами боросодежащих соединений на урожайность льна-долгунца (льносолома, семена) в 2019 г., ц/га

№ п/п	Воздействующее вещество раствора	Урожайнос	ть, ц/га	Прибавка к контролю, $\frac{\pi}{4}$		
		льносолома	семена	льносолома	семена	
1	-	38.8	3.4	-	-	
2	H ₃ BO ₃ ;	42.8	4.3	+4.0/10.3	+ 0.9/26.4	
3	В-ЭДТУК	41.9	4.8	+3.1/8.0	+1.4/41.1	
4	В-ЭДДЯК	44.7	5.3	+ 5.9/15.2	+1.9/55.9	
5	В-ИДЯК	42.7	5.1	+3.9/10.0	+1.7/50.0	
HCP _{0,05}		1,1	0,49			

Подкормка боросодержащими комплексами положительно повлияла и на показатели качества льносоломы (табл. 2). Техническая длина соломы была выше у всех вариантов опыта по сравнению с контролем на 7-10 см (9.1-13.0%). При этом увеличивались: выход луба (продукта, получаемого из льносоломы после отделения костры, т.е.

древесины), крепость и пригодность. Содержание луба колебалось от 30.8 до 33.4 % в зависимости от подкормки. Прибавка к контролю составила от 1.3 до 3.9%.

Таблица 2 Влияние внекорневой обработки растворами боросодежащих соелинений на качество льносоломы

No	Воздействующее	Техническая	Выход	Крепость,	Пригодность,	Номер
п/п	вещество раствора	длина, см	луба, %	даН	ед.	$(N_{\underline{0}})$
1	-	77	29.5	18,0	0.90	1.50
2	H ₃ BO ₃ ;	86	32.3	20.6	0.95	1.75
3	В-ЭДТУК	84	30.8	20.0	0.95	1.75
4	В-ЭДДЯК	87	33.4	23.9	0.95	1.75
5	В-ИДЯК	85	31.7	22.8	0.95	1.75

Обработка льна растворами комплексонатов комплексонов, производных янтарной кислоты, В-ЭДДЯК и В-ИДЯК способствовала увеличению продуктивности и повышению качества продукции по сравнению с другими вариантами. Луб – наиболее ценная часть льносоломы почти полностью состоит из биополимеров: целлюлозы (52-76%) и сопутствующих ей гемицеллюлозы, лигнина, пектиновых веществ [7]. Поэтому вполне объяснимо под воздействием соединений бора, регулирующего синтез и транспорт углеводов в растения, и увеличение выхода луба, и повышение его физикотехнических качеств, что особенно заметно в варианте с воздействием В-ЭДДЯК. Можно полагать, что продукты внутриклеточной деструкции этого соединения быстрее и легче включаются в обменные реакции развивающегося растения. Аналогичный, но несколько более слабый эффект влияния В-ИДЯК, требует дальнейшего изучения и уточнения. Заметное стимулирующее действие комплексонатов, по-видимому, связано с тем, что при внекорневой подкормке часть препаратов, попадая в почву, взаимодействуя с её минеральной частью, переводят микроэлементы-металлы, в доступные для растений комплексные соединения, освобождая при этом борат-анионы. Даже небольшое дополнительное поступление микроэлементов в растение корневую систему благоприятно сказывается на его росте и развитии.

Заключение

Предварительные результаты, полученные в однолетнем полевом опыте, показали, что внекорневая подкормка борсодержащими соединениями улучшила питание растений и положительно повлияла на фазу цветения, а также увеличила период созревания семян на 1-3 дня,

что оказало значительное влияние на урожайность семян льна-долгунца. Применение подкормки способствовало росту урожайности льна-долгунца.

Наибольшее положительное и стабильное влияние оказала обработка посевов хелатным комплексом В-ЭДДЯК. льна Эффективность в качестве нового борного этого комплекса микроудобрения характеризуется увеличением продуктивности льнальнопродукции. Проведённое качества долгунца и повышением однолетнее исследование с целью устранения случайных факторов воздействия будет продолжено и расширено.

Список литературы

- 1. Ермаков И.П. Физиология растений М.: «Академия», 2007. 640 с.
- 2. Loginova E.S., Nikol'skii V.M. // Russian Journal of Physical Chemistry B. 2017. V. 11. No. 4. P. 708–713. DOI: 10.1134/S1990793117040200.
- Smirnova T.I., Khizhnyak S.D., Nikolskiy V.M. [et all.] // Russian Journal of Applied Chemistry. 2017. V. 90. No. 4. P. 406–411. DOI: 10.1134/S1070427217040024.
- 4. Никольский В.М., Смирнова Т.И. // Аграрные ландшафты, их устойчивость и особенности развития: сб. науч. Тр. По материалам Междунар.науч. экол. Конф. Краснодар: КубГАУ. С. 265-267.
- 5. Дедюхина Э.Г., Чистякова Т.И., Минкевич И.К. // Вестник биотехнологии и физико-химической биологии. 2007. Т.3, №2. С. 40-49.
- 6. Доспехов Б.А. Методика полевого опыта М.: Агропромиздат. 1985. 351 с.
- 7. Заводов В.С. // Национальная безопасность и экономика России. 2003. №1-2. С. 114-115.
- 8. Смирнова Т.И.,. Никольский В.М, Кудряшова Н.В., Иванютина Н.Н., Усанова З.И. // Энергосбережение и водоподготовка, 2009, №1 (57), С.61-63.
- 9. Усанова З.И., Смирнова Т.И., Иванютина Н.Н., Павлов М.Н., Булюкина О.А. // Вестник Тверского государственного университета. Серия: Химия. 2017. № 3. С. 139-147.
- 10. Усанова, З.И. Методика выполнения научных исследований по растениеводству: учебное пособие Тверь: Тверская ГСХА, 2015. 143 с.

Об авторах:

ПЕТРОВА Алла Анатольевна – кандидат сельскохозяйственных наук старший научный сотрудник ФНЦ Лубяных культур, e-mail: a.petrova@fnclk.ru

СМИРНОВА Татьяна Ивановна – кандидат химических наук, доцент кафедры агрохимии и земледелия Тверской государственной сельскохозяйственной академии, e-mail: tatsmi2013@mail.ru

ПАВЛОВ Максим Николаевич – кандидат сельскохозяйственных наук, старший преподаватель кафедры агрохимии и земледелия Тверской государственной сельскохозяйственной академии, e-mail: maxnipav@gmail.com

ВАРЛАМОВА Анна Александровна – аспирантка кафедры неорганической и аналитической химии Тверского государственного университета, e-mail: varlamova-1995@mail.ru

НИКОЛЬСКИЙ Виктор Михайлович – доктор химических наук, профессор кафедры неорганической и аналитической химии Тверского государственного университета, e-mail: p000797@tversu.ru

STIMULATING ACTION OF BORON-CONTAINING CHELATIC COMPLEXES ON LONG-FLAX

A.A. Petrova¹, T.I. Smirnova², M.N. Pavlov², A.A. Varlamova³, V.M., Nikolskiy³

¹ Federal State Budgetary Institution Scientific Center of Bast Crops, Tver ² FSBEI HE Tver State Agricultural Academy, Tver ³ FSBEI HE Tver State University, Tver

The biostimulating effect of borate-iminodisuccinate (B-IDAC) and borate-ethylenediamine disuccinate (B-EDDJAC) was studied on long-flax plants under field conditions in comparison with boric acid and borate-ethylenediaminetetraacetate (B-EDTA). It was found that the most active biostimulant is B-EDDYAK. Processing flax plants with V-EDDJAC solution not only increases the yield of flax straw and seeds, but also improves the physicochemical properties of flax fiber.

Keywords: boron, complexones, chelate complexes, biostimulating action, long-flax.