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We study the asymptotic behavior of the number of maximal trees in the
preferential attachment model. In our model, we consider a sequence of
graphs built by the following recursive rule. We start with the complete
graph on m+1 vertices, m > 1. Then on the n+1 step, we add vertex n+1
and draw m edges from it to different vertices from 1,...,n, chosen with
probabilities proportional to their degrees plus some positive parameter 3.
We prove the convergence speed for the number of maximal trees in such a
model using the stochastic approximation technique.
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Introduction

The number of subgraphs of a graph is studied for many different graph models (see,
e.g., [2,3]). In the present paper, we are focused on the number of maximal subtrees (a
subtree is mazimal in G,, if all its non-leaf vertices are adjacent only to vertices of that
tree) for a preferential attachment model. The number of maximal subgraphs relates
to a local structure of the graph and could be used, e.g., to prove logical convergence
laws for random graphs (see, e.g., [7]) While the expected number of subgraphs is
often obtained using combinatorial arguments (see, e.g., [6]) we would use stochastic
approximation (see [1, 8] for more details on stochastic approximation processes) to
obtain result about the convergence rate. Note that a similar result for the uniform
attachment model was obtained in [5].

Let us describe the preferential attachment graph model considered in the paper. We
start with a complete graph G,,, on m vertices. Then on each step, we construct a graph
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G, by adding to G,,_1 a new vertex and drawing m edges from it to different vertices,
chosen among vertices of G,, with probabilities proportional to their degrees plus a

parameter § > 0. Note that in such a model (see, e.g., Lemma 3 of [4]), the maximum
M) _ 0

degree M(n) of G, is o(nﬁ“) for any e > 0 almost surely (i.e. lim, oo —7—
nTt—1

almost surely), where 7 = 3 + % In particular, M(n) = o(n'/?=¢) for some ¢ > 0.

For a rooted tree T, let Ny (n) be the number of vertices that are roots of maximal
subtrees of G, isomorphic to T. Note that the set T of all isomorphism classes of
rooted trees with at most IV vertices of depth b is finite. We would refer to a maximal
subtree of G, isomorphic to a tree T from that set as having the type T (i.e. when we
talk about the type of a tree in G,, we assume it is rooted and maximal). Also, we call
a tree T' maz-admissible if it could be a maximal subtree of G,, for large enough n. Let
us formulate our main result.

Theorem 1. For maz-admissible tree T there is a constant pr € (0,1), such that for
any d >0
Nr(n) = ppn + o(n/**%)  a.s.

We would prove this result by induction over b using results about stochastic
approximation processes.

Let us first describe these results. An r-dimensional process Z(n) with the
corresponding filtration F,, is called a stochastic approximation process if it could
be written in the following way

1

Z(n—i—l)—Z(n):TH_1

(F(Z(n)) + Ent1 + Rptr), (1)

where E,,, R,, and the function F' satisfy the following conditions (we would provide
stronger conditions that are needed for [1, Theorem 3.1.1] to hold). There exists U C R”
such that Z, € U for all n almost surely and

Al The function F' : R” — R" has a unique root § in U, and its components are
twice continuously differentiable in some neighborhood of U.

A2 The derivative matrix of F(z) exists, and its biggest eigenvalue does not exceed
—1/2.

A3 E, is a martingale difference with respect to JF,,, sup,, E(|E,11]?|F,) < oo almost

surely and for some 6 € (0,1/2), R, = O(n~°%) almost surely (i.e. there exists a
|Ron |
n—"o

non-random constant C, such that limsup,,_, ., < C almost surely).
We need the following result:

Theorem 2. [1, Theorem 3.1.1] Under the above conditions, Z(n) — 0 a.s. with the
convergence rate
|Z(n) — 0] = o(n™%)  almost surely.

1. Number of vertices of fixed degree

We prove the theorem by induction over b. To prove the case b = 1 we need to
prove the convergence rate for the number Ni(n) of vertices with degree k at time n
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for k > m. Let fix N € N, N > m. Let Xi(n) := Nx(n)/n, m <k < N. Let define

2+ B)ymb—m ﬁ i—1
Pr = ‘ ;
m?+2+p4 i=m+1mz+2+ﬁ

k=m,...,N. (2)

For b =1, the statement of Theorem 1 could be formulated as follow.
Lemma 1. X;(n) — p with rate | Xy (n) — pr| = o(n='/?*%) for any 6 > 0 a.s.

Proof. The probability to draw an edge to a given vertex of degree k at step n + 1
equals to

"on(2+8) —k— Y0 di(n) m k
1-— - =1- 1- P )
13 n(2+ 8) — Y121 dj(n) 1} ( n(2+8) - Y dj<n>>

where d;(n) is the degree of the vertex joined by the j-th edge. Since d;(n) = o(n'/?~¢)
for some € > 0, we get that probability to draw and edge to a given vertex of a degree

k equals
_mk (L (3)
n(2 + B) O\ ndrzre )

Let F,, be the filtration that corresponds to the graphs G,,. We get

B m? Ny (n)
E(Nm(n +1) = N (n)|Fn) =1 = mNm(n) t+o (n3/2+6> )
m(k—1) mk

E (Nk(n+1) — Ni(n)|F,) =

1
nz ) Ve ) = e Ne(n) £ o <n1/2+e> )

k=m+1,...,N. For Xi(n) we get

E (Xu(n+1) = Xu()|F) = —— BN+ 1) = Nelw)| Fa) = X)) . (4)

Let us define functions

2

fm(xmw-sz) =1- (277—::ﬁ +1) T,

m(k —1)
2+ 3

mk
fe(@m, - 2N) = xk—1—<—|—1>xk, k=m+1,...,N.

248

Then, for all k& € [m, N],

E(Xp(n+ 1) — Xx(n)|F) = %H (fk (X (n),..., Xn(n)) + 0 (nl/;)) )

For the vector Z(n) := (X;m(n),..., Xn(n)) we get

1

Zn+1)=2(n) = ——~ (F(Z(n)) + (4 1)(Zn+1) — E(Z(n+ D F) + o (nl/lﬂ)) ,
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where F(xp,,...,2N) = (fo(@my -y TN)s ooy IN(Tiny - - TN ))E. Set

En+1:(n+1)(Z(n+1)—E(Z(n+1)|]:n))7 Rn-l-lzo(nl/IQ-i-e)'

Let us find nulls of the system F(z,,...,zy) =0, i.e. the system

11—y =z

2+B m - mo 6

m(k—1) mk _ k= 1 N ()
215 Tk- 1—2+Bl‘k = Tk, =m-+1,..., V.

We get
248
m(k —1)
= ——"— ) k= 1,...,N.
Tk mk+2+ﬁxk 1 m+1,...,
Therefore for k=m+1,...,N
(2+ BymF—m i—1
Tk = m2+2+ﬂ H mit+2+p’
and, hence, the system (6) has a unique solution zp = pg, k = m,...,N. Let us

check the conditions of Theorem 2. The non-zero partial derivatives of functions fy,
k=m,...,N, equals

Ofm - 2
aim (T vyxq) = —2"}73 -1,

9 k—1

ag:kl($m7...7$d) = mézﬁh k=m+1,...,N, (7)
8£Z($m7...7$d) = —3f5— L k=m+1,...,N.

Since diagonal elements exceed below-diagonals by 1, the largest real part of the
eigenvalues of the derivative matrix equals —1. Hence, the process Z(n) satisfies
the conditions Al,A2 of Theorem 2. To check condition A3 we first recall that
Roy1 = o(=r) for some ¢ > 0. At each step, we draw m edges, so we
change the degrees of exactly m vertices while adding one new vertex. Therefore,
|Nk(n + 1) = Nig(n)] < m+ 1 and [Xg(n 4+ 1) — Xp(n)| < 2. Hence, for E,4q
we get

[Enia| < (n+1)(1Z2(n+1) = Z(n)| + [E(Z(n + 1) = Z(n)|Fn)])
m+1)(m+1)(N-—m+1)

)

<2

n

which results in condition A3. By Theorem 2, we get the statement of Lemma 1. [

2. Number of rooted trees

Now we finish the proof of Theorem 1 by proving the induction step over tree depth
b. Let us fix b > 1 and N € N (we assume N is large enough so at least one achievable
tree of depth b on N vertices exists). We assume that the statement of Theorem 1 and
some auxiliary statements over the course of the proof are true for all maximal trees
of depth at most b — 1 on at most N vertices.
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Proof. Let us define variables Xr(n) := Np(n)/n and vector Zy(n) := (X1,(n)) over
all rooted trees T; € Ty that could be maximal subtrees of G,, (there are only finitely
many such trees). We suggest that the order of the elements of Z(n) is defined in a way
such that the addition of new branches (that preserves the depth of the tree) increases
the order.

Note that

1

E(Xr(n+1) = Xr(n)lFa) = ~—

(E(Nz(n+1) = Np(n)|Fn) — Xo(n)).

There are two ways to change Z,(n) at time n + 1.

First, we could draw an edge to a tree of type T" € T . This results in the decrease
of Ny by 1 and a possible increase in one of the bigger components of Z,(n) (when
the tree changes type to the type 7" € Ty,). For the latter to happen, we need to
draw the rest of the edges to the roots of the maximal non-intersecting trees of depth
at most b — 2 of given types 11, ...,Tyn—1 € Tnp—2 (with bounded degrees since T
contains trees on at most N vertices). Since the degrees of such trees are bounded, the
probability to draw edges to intersecting trees is O (%) Hence, the expected numbers
of trees with type changes between T' € Ty, and T7 € Ty, (17 is bigger than T') is
polynomial of Xr(n), X7, (n),...,Xr, _,(n) up to the term o(n~'/2). Note that the
expected number of trees of type T that changes type is polynomial of X7 (n) up to
the term o(n~'/2) as well.

The second way to change Z,(n) is to create a maximal tree of type T € Ty,
with root n + 1. To do so we need to draw edges from n 4+ 1 to m roots of the
maximal non-intersecting tree of depth b — 1 of given types 11, ..., T}, (with bounded
degrees). The probability of creating a maximal tree of type T this way is polynomial
of X, (n),..., X1, (n). Note that the degree of the root of such trees would be equal
to m, so they would be among the smallest trees from T; € Ty 5, including the smallest
achievable tree.

As result we get

E(Zy(n +1) ~ Zo(n)\ F) = —— (4Zy(n)  Zy(n) + Vi + o(n”"/?))

n+1
where A, = Ap(Z1(n), ..., Zp—2(n)) is a lower-triangular matrix with negative elements
on the diagonal and non-negative under the diagonal and Y, = Y,(Z,-1(n)) is a

vector, such that the elements of both A, and Y; are polynomials of Xr,(n), where
T; are trees of depth at most b — 2 (for A;) or exactly b — 1 (for V;). Let consider
Fy(Z1,...,2Zy) == AyZy(n) — Zy(n) + Y, (note that A, and Y, are functions of

Zi,...,Zp—1 itself). Note that Fj, is deterministic. By induction assumption, there
is a unique solution of the system Fj(z1,...,2;) = 0,4 = 1,...,b — 1. Let us define
Hy(z) = Fy(2f,...,2f_1,2p)- Then Hy(2,) = 0 is a system of linear equations with the

unique root z; since Ay is lower-triangular with negative elements on the diagonal. Now
let us show that all components of z; are positive. Recall that all elements under the
diagonal of A, are non-negative and each (except the first) row has at least one positive
element outside the diagonal (if a tree is not the smallest possible, we could remove
one vertex with its children from it to make it smaller). All components of Y3(2;_1, pa)
are non-negative as well. Finally, the first element of Y} is positive since the smallest
max-admissible tree of depth b (which corresponds to the first coordinate of z;) could
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be obtained by drawing edges from a new vertex to the smallest max-admissible trees
of depth b — 1 and the first coordinate of z;_; is positive by the induction hypothesis.
Let us consider the vector Wy(n) = (Z1(n), ..., Zp(n)). We get that

_ 1 ~-1/2
E(Wo(n +1) = Wym)|F) = = ((Fu.... ) +o(n™"/%).
The derivative matrix of function (F1y,..., Fy)(z1,...,2) is of following form. Around

the diagonal, it has clusters of derivatives of F; with respect to z;, which are lower-
triangular (since F; = A;z; — z; + Y;) with diagonal elements at most —1. Since F;
depends only on zi,...,z2;, all elements above diagonal clusters are 0. Therefore the
highest eigenvalue of the derivative matrix of (F1,. .., Fp) is —1 (for all possible process
values). Hence Wy(n) satisfies condition A2 of Theorem 2. Since functions (F1,. .., Fp)
have second-order derivatives, condition Al is satisfied as well. To check condition A3
note that if we take

Epi1 = (n+1)(Wy(n+1) — EWy(n + 1)|Fn)),
then
Rui:=(n+1)(We(n+1) = Wy(n)) = (F1,... . Fy) — Enpa
= (n+ DEWy(n + 1) = Wy(n)|Fn) — (F1, ..., Fy) =o(n~?) as.
and
|Enti1] < (n+1)[Wy(n +1) = Wy(n)| + (n + DE(Ws(n + 1) = Wy(n)|Fn)| < C

for some constant C' since the number of maximal trees (on at most N vertices) of
depth b that the vertex m + 1 could impact is bounded from above by a constant,
which results in condition A3. Therefore, due to Theorem 2 Wy(n) converges a.s. to
(2%,...,2;) with the rate o(n='/2%9) for any 6§ > 0 almost surely. O
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NCCJIEJOBAHUE YNCJIA MAKCUMAJIBHBIX JEPEBBEB B
MOJEJIN ITPEAIIOYTUTEJIBHOT'O ITPUCOEJMHEHNA C
ITOMOIIBIO CTOXACTUNYECKOMU AIIITPOKCUMAIINN

Maunpmmkua FO.A.
TBepckoit TOCyIaPCTBEHHBIN YHUBEPCUTET, . TBEpH
MockoBckuit (pu3nKO-TeEXHUIECKAH WHCTUTYT, I. MOCKBa

Iocmynuaa 6 pedaxyuro 24.11.2022, nocae nepepabomxu 21.06.2023.

B crarbe ucciemyercs aCUMITOTHYECKOE MOBEIEHIE UNCIA MAKCHUMATIBHBIX
JIepEBBEB B MOEN TpadOB MPEANOYTUTETHHOIO IpUCoeanuenus. B npe-
JlaraeMoi MO/JIeJTH PACCMATPUBAETCs TOCJIe/I0BATEIbHOCTH IpadoB, KOTOPast
CTPOUTCS TIO CJIEIYIONIEMY PeKypCuBHOMY npasBuiy. Mbl HadnHaeM mocTpo-
enre ¢ noaHOro rpaga ma m + 1 Bepumae, m > 1. 3arem Ha n + 1l-om
mare Mbl J00aBjisieM BepIIUHY 71 + 1 U mpoBoamM w3 Hee m pedep B pas-
JINYHBIE BEPIIUHBI, BLIOPAHHBIE C BEPOSITHOCTSIMU, MTPOTIOPITHOHATIBHBIMA WX
CTEMEHsIM TIJIIOC HEKOTOPBIi MOJIOXKUTEIbHBIN mapamerp 5. B crarbe mosry-
9€H PEe3yIbTaT O CKOPOCTH CXOAMMOCTH YUCJIA MAKCHMAJLHBIX TEPEBHEB B
YKA3aHHOI MOJENH C MOMOIIBI0 CTOXaCTUIECKOH AIIPOKCHMAIINH.

KurroueBbie ciioBa: ciaydaiiabie rpadbl, MPEATOYTUTEIHHOE TPUCOEINHE-
HHE, CTOXaCTUYeCKasd alllpOKCUMAIUA.
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