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Introduction

The number of subgraphs of a graph is studied for many different graph models (see,
e.g., [2,3]). In the present paper, we are focused on the number of maximal subtrees (a
subtree is maximal in 𝐺𝑛 if all its non-leaf vertices are adjacent only to vertices of that
tree) for a preferential attachment model. The number of maximal subgraphs relates
to a local structure of the graph and could be used, e.g., to prove logical convergence
laws for random graphs (see, e.g., [7]) While the expected number of subgraphs is
often obtained using combinatorial arguments (see, e.g., [6]) we would use stochastic
approximation (see [1, 8] for more details on stochastic approximation processes) to
obtain result about the convergence rate. Note that a similar result for the uniform
attachment model was obtained in [5].

Let us describe the preferential attachment graph model considered in the paper. We
start with a complete graph 𝐺𝑚 on𝑚 vertices. Then on each step, we construct a graph
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𝐺𝑛 by adding to 𝐺𝑛−1 a new vertex and drawing 𝑚 edges from it to different vertices,
chosen among vertices of 𝐺𝑛 with probabilities proportional to their degrees plus a
parameter 𝛽 > 0. Note that in such a model (see, e.g., Lemma 3 of [4]), the maximum

degree 𝑀(𝑛) of 𝐺𝑛 is 𝑜(𝑛
1

𝜏−1+𝜖) for any 𝜖 > 0 almost surely (i.e. lim𝑛→∞
𝑀(𝑛)

𝑛
1

𝜏−1
+𝜖

= 0

almost surely), where 𝜏 = 3 + 𝛽
𝑚 . In particular, 𝑀(𝑛) = 𝑜(𝑛1/2−𝜖) for some 𝜖 > 0.

For a rooted tree 𝑇 , let 𝑁𝑇 (𝑛) be the number of vertices that are roots of maximal
subtrees of 𝐺𝑛 isomorphic to 𝑇 . Note that the set 𝒯𝑁,𝑏 of all isomorphism classes of
rooted trees with at most 𝑁 vertices of depth 𝑏 is finite. We would refer to a maximal
subtree of 𝐺𝑛 isomorphic to a tree 𝑇 from that set as having the type 𝑇 (i.e. when we
talk about the type of a tree in 𝐺𝑛 we assume it is rooted and maximal). Also, we call
a tree 𝑇 max-admissible if it could be a maximal subtree of 𝐺𝑛 for large enough 𝑛. Let
us formulate our main result.

Theorem 1. For max-admissible tree 𝑇 there is a constant 𝜌𝑇 ∈ (0, 1), such that for
any 𝛿 > 0

𝑁𝑇 (𝑛) = 𝜌𝑇𝑛 + 𝑜(𝑛1/2+𝛿) a.s.

We would prove this result by induction over 𝑏 using results about stochastic
approximation processes.

Let us first describe these results. An 𝑟-dimensional process 𝑍(𝑛) with the
corresponding filtration ℱ𝑛 is called a stochastic approximation process if it could
be written in the following way

𝑍(𝑛 + 1) − 𝑍(𝑛) =
1

𝑛 + 1
(𝐹 (𝑍(𝑛)) + 𝐸𝑛+1 + 𝑅𝑛+1) , (1)

where 𝐸𝑛, 𝑅𝑛, and the function 𝐹 satisfy the following conditions (we would provide
stronger conditions that are needed for [1, Theorem 3.1.1] to hold). There exists 𝑈 ⊂ R𝑟

such that 𝑍𝑛 ∈ 𝑈 for all 𝑛 almost surely and

A1 The function 𝐹 : R𝑟 → R𝑟 has a unique root 𝜃 in 𝑈 , and its components are
twice continuously differentiable in some neighborhood of 𝑈 .

A2 The derivative matrix of 𝐹 (𝑥) exists, and its biggest eigenvalue does not exceed
−1/2.

A3 𝐸𝑛 is a martingale difference with respect to ℱ𝑛, sup𝑛 E(|𝐸𝑛+1|2|ℱ𝑛) < ∞ almost
surely and for some 𝛿 ∈ (0, 1/2), 𝑅𝑛 = 𝑂(𝑛−𝛿) almost surely (i.e. there exists a

non-random constant 𝐶, such that lim sup𝑛→∞
|𝑅𝑛|
𝑛−𝛿 ≤ 𝐶 almost surely).

We need the following result:

Theorem 2. [1, Theorem 3.1.1] Under the above conditions, 𝑍(𝑛) → 𝜃 a.s. with the
convergence rate

|𝑍(𝑛) − 𝜃| = 𝑜(𝑛−𝛿) almost surely.

1. Number of vertices of fixed degree

We prove the theorem by induction over 𝑏. To prove the case 𝑏 = 1 we need to
prove the convergence rate for the number 𝑁𝑘(𝑛) of vertices with degree 𝑘 at time 𝑛
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for 𝑘 ≥ 𝑚. Let fix 𝑁 ∈ N, 𝑁 ≥ 𝑚. Let 𝑋𝑘(𝑛) := 𝑁𝑘(𝑛)/𝑛, 𝑚 ≤ 𝑘 ≤ 𝑁 . Let define

𝜌𝑘 :=
(2 + 𝛽)𝑚𝑘−𝑚

𝑚2 + 2 + 𝛽

𝑘∏︁

𝑖=𝑚+1

𝑖− 1

𝑚𝑖 + 2 + 𝛽
, 𝑘 = 𝑚, . . . , 𝑁. (2)

For 𝑏 = 1, the statement of Theorem 1 could be formulated as follow.

Lemma 1. 𝑋𝑘(𝑛) → 𝜌𝑘 with rate |𝑋𝑘(𝑛) − 𝜌𝑘| = 𝑜(𝑛−1/2+𝛿) for any 𝛿 > 0 a.s.

Proof. The probability to draw an edge to a given vertex of degree 𝑘 at step 𝑛 + 1
equals to

1 −
𝑚∏︁

𝑖=1

𝑛(2 + 𝛽) − 𝑘 −
∑︀𝑖−1

𝑗=1 𝑑𝑗(𝑛)

𝑛(2 + 𝛽) −
∑︀𝑖−1

𝑗=1 𝑑𝑗(𝑛)
= 1 −

𝑚∏︁

𝑖=1

(︃
1 − 𝑘

𝑛(2 + 𝛽) −
∑︀𝑖−1

𝑗=1 𝑑𝑗(𝑛)

)︃
,

where 𝑑𝑗(𝑛) is the degree of the vertex joined by the 𝑗-th edge. Since 𝑑𝑗(𝑛) = 𝑜(𝑛1/2−𝜖)
for some 𝜖 > 0, we get that probability to draw and edge to a given vertex of a degree
𝑘 equals

𝑚𝑘

𝑛(2 + 𝛽)
+ 𝑜

(︂
1

𝑛3/2+𝜖

)︂
. (3)

Let ℱ𝑛 be the filtration that corresponds to the graphs 𝐺𝑛. We get

E (𝑁𝑚(𝑛 + 1) −𝑁𝑚(𝑛)|ℱ𝑛) = 1 − 𝑚2

𝑛(2 + 𝛽)
𝑁𝑚(𝑛) + 𝑜

(︂
𝑁𝑚(𝑛)

𝑛3/2+𝜖

)︂
,

E (𝑁𝑘(𝑛 + 1) −𝑁𝑘(𝑛)|ℱ𝑛) =
𝑚(𝑘 − 1)

𝑛(2 + 𝛽)
𝑁𝑘−1(𝑛) − 𝑚𝑘

𝑛(2 + 𝛽)
𝑁𝑘(𝑛) + 𝑜

(︂
1

𝑛1/2+𝜖

)︂
,

𝑘 = 𝑚 + 1, . . . , 𝑁 . For 𝑋𝑘(𝑛) we get

E (𝑋𝑘(𝑛 + 1) −𝑋𝑘(𝑛)|ℱ𝑛) =
1

𝑛 + 1
(E (𝑁𝑘(𝑛 + 1) −𝑁𝑘(𝑛)|ℱ𝑛) −𝑋𝑘(𝑛)) . (4)

Let us define functions

𝑓𝑚(𝑥𝑚, . . . , 𝑥𝑁 ) = 1 −
(︂

𝑚2

2 + 𝛽
+ 1

)︂
𝑥𝑚,

𝑓𝑘(𝑥𝑚, . . . , 𝑥𝑁 ) =
𝑚(𝑘 − 1)

2 + 𝛽
𝑥𝑘−1 −

(︂
𝑚𝑘

2 + 𝛽
+ 1

)︂
𝑥𝑘, 𝑘 = 𝑚 + 1, . . . , 𝑁.

Then, for all 𝑘 ∈ [𝑚,𝑁 ],

E (𝑋𝑘(𝑛 + 1) −𝑋𝑘(𝑛)|ℱ𝑛) =
1

𝑛 + 1

(︂
𝑓𝑘 (𝑋𝑚(𝑛), . . . , 𝑋𝑁 (𝑛)) + 𝑜

(︂
1

𝑛1/2+𝜖

)︂)︂
. (5)

For the vector 𝑍(𝑛) := (𝑋𝑚(𝑛), . . . , 𝑋𝑁 (𝑛)) we get

𝑍(𝑛+1)−𝑍(𝑛) =
1

𝑛 + 1

(︂
𝐹 (𝑍(𝑛)) + (𝑛 + 1)(𝑍(𝑛 + 1) − E(𝑍(𝑛 + 1)|ℱ𝑛)) + 𝑜

(︂
1

𝑛1/2+𝜖

)︂)︂
,
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where 𝐹 (𝑥𝑚, . . . , 𝑥𝑁 ) = (𝑓𝑚(𝑥𝑚, . . . , 𝑥𝑁 ), . . . , 𝑓𝑁 (𝑥𝑚, . . . , 𝑥𝑁 ))𝑡. Set

𝐸𝑛+1 = (𝑛 + 1)(𝑍(𝑛 + 1) − E(𝑍(𝑛 + 1)|ℱ𝑛)), 𝑅𝑛+1 = 𝑜

(︂
1

𝑛1/2+𝜖

)︂
.

Let us find nulls of the system 𝐹 (𝑥𝑚, . . . , 𝑥𝑁 ) = 0, i.e. the system
{︃

1 − 𝑚2

2+𝛽𝑥𝑚 = 𝑥𝑚,
𝑚(𝑘−1)
2+𝛽 𝑥𝑘−1 − 𝑚𝑘

2+𝛽𝑥𝑘 = 𝑥𝑘, 𝑘 = 𝑚 + 1, . . . , 𝑁.
(6)

We get

𝑥𝑚 =
2 + 𝛽

𝑚2 + 2 + 𝛽
,

𝑥𝑘 =
𝑚(𝑘 − 1)

𝑚𝑘 + 2 + 𝛽
𝑥𝑘−1, 𝑘 = 𝑚 + 1, . . . , 𝑁.

Therefore for 𝑘 = 𝑚 + 1, . . . , 𝑁

𝑥𝑘 =
(2 + 𝛽)𝑚𝑘−𝑚

𝑚2 + 2 + 𝛽

𝑘∏︁

𝑖=𝑚+1

𝑖− 1

𝑚𝑖 + 2 + 𝛽
,

and, hence, the system (6) has a unique solution 𝑥𝑘 = 𝜌𝑘, 𝑘 = 𝑚, . . . , 𝑁 . Let us
check the conditions of Theorem 2. The non-zero partial derivatives of functions 𝑓𝑘,
𝑘 = 𝑚, . . . , 𝑁 , equals

⎧
⎪⎨
⎪⎩

𝜕𝑓𝑚
𝜕𝑥𝑚

(𝑥𝑚, . . . , 𝑥𝑑) = − 𝑚2

2+𝛽 − 1,
𝜕𝑓𝑘

𝜕𝑥𝑘−1
(𝑥𝑚, . . . , 𝑥𝑑) = 𝑚(𝑘−1)

2+𝛽 , 𝑘 = 𝑚 + 1, . . . , 𝑁,
𝜕𝑓𝑘
𝜕𝑥𝑘

(𝑥𝑚, . . . , 𝑥𝑑) = − 𝑚𝑘
2+𝛽 − 1, 𝑘 = 𝑚 + 1, . . . , 𝑁.

(7)

Since diagonal elements exceed below-diagonals by 1, the largest real part of the
eigenvalues of the derivative matrix equals −1. Hence, the process 𝑍(𝑛) satisfies
the conditions A1,A2 of Theorem 2. To check condition A3 we first recall that
𝑅𝑛+1 = 𝑜

(︀
1

𝑛1/2+𝜖

)︀
for some 𝜖 > 0. At each step, we draw 𝑚 edges, so we

change the degrees of exactly 𝑚 vertices while adding one new vertex. Therefore,
|𝑁𝑘(𝑛 + 1) − 𝑁𝑘(𝑛)| ≤ 𝑚 + 1 and |𝑋𝑘(𝑛 + 1) − 𝑋𝑘(𝑛)| ≤ 𝑚+1

𝑛 . Hence, for 𝐸𝑛+1

we get

|𝐸𝑛+1| ≤ (𝑛 + 1) (|𝑍(𝑛 + 1) − 𝑍(𝑛)| + |E(𝑍(𝑛 + 1) − 𝑍(𝑛)|ℱ𝑛)|)

≤ 2
(𝑛 + 1)(𝑚 + 1)(𝑁 −𝑚 + 1)

𝑛
,

which results in condition 𝐴3. By Theorem 2, we get the statement of Lemma 1.

2. Number of rooted trees

Now we finish the proof of Theorem 1 by proving the induction step over tree depth
𝑏. Let us fix 𝑏 > 1 and 𝑁 ∈ N (we assume 𝑁 is large enough so at least one achievable
tree of depth 𝑏 on 𝑁 vertices exists). We assume that the statement of Theorem 1 and
some auxiliary statements over the course of the proof are true for all maximal trees
of depth at most 𝑏− 1 on at most 𝑁 vertices.
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Proof. Let us define variables 𝑋𝑇 (𝑛) := 𝑁𝑇 (𝑛)/𝑛 and vector 𝑍𝑏(𝑛) := (𝑋𝑇𝑖(𝑛)) over
all rooted trees 𝑇𝑖 ∈ 𝒯𝑁,𝑏 that could be maximal subtrees of 𝐺𝑛 (there are only finitely
many such trees). We suggest that the order of the elements of 𝑍𝑏(𝑛) is defined in a way
such that the addition of new branches (that preserves the depth of the tree) increases
the order.

Note that

E(𝑋𝑇 (𝑛 + 1) −𝑋𝑇 (𝑛)|ℱ𝑛) =
1

𝑛 + 1
(E(𝑁𝑇 (𝑛 + 1) −𝑁𝑇 (𝑛)|ℱ𝑛) −𝑋𝑇 (𝑛)) .

There are two ways to change 𝑍𝑏(𝑛) at time 𝑛 + 1.
First, we could draw an edge to a tree of type 𝑇 ∈ 𝒯𝑁,𝑏. This results in the decrease

of 𝑁𝑇 by 1 and a possible increase in one of the bigger components of 𝑍𝑏(𝑛) (when
the tree changes type to the type 𝑇 ′ ∈ 𝒯𝑁,𝑏). For the latter to happen, we need to
draw the rest of the edges to the roots of the maximal non-intersecting trees of depth
at most 𝑏 − 2 of given types 𝑇1, ..., 𝑇𝑚−1 ∈ 𝒯𝑁,𝑏−2 (with bounded degrees since 𝒯𝑁,𝑏

contains trees on at most 𝑁 vertices). Since the degrees of such trees are bounded, the
probability to draw edges to intersecting trees is 𝑂

(︀
1
𝑛

)︀
. Hence, the expected numbers

of trees with type changes between 𝑇 ∈ 𝒯𝑁,𝑏 and 𝑇 ′ ∈ 𝒯𝑁,𝑏 (𝑇
′ is bigger than 𝑇 ) is

polynomial of 𝑋𝑇 (𝑛), 𝑋𝑇1(𝑛), . . . , 𝑋𝑇𝑚−1(𝑛) up to the term 𝑜(𝑛−1/2). Note that the
expected number of trees of type 𝑇 that changes type is polynomial of 𝑋𝑇 (𝑛) up to
the term 𝑜(𝑛−1/2) as well.

The second way to change 𝑍𝑏(𝑛) is to create a maximal tree of type 𝑇 ∈ 𝒯𝑁,𝑏

with root 𝑛 + 1. To do so we need to draw edges from 𝑛 + 1 to 𝑚 roots of the
maximal non-intersecting tree of depth 𝑏 − 1 of given types 𝑇1, ..., 𝑇𝑚 (with bounded
degrees). The probability of creating a maximal tree of type 𝑇 this way is polynomial
of 𝑋𝑇1

(𝑛), . . . , 𝑋𝑇𝑚
(𝑛). Note that the degree of the root of such trees would be equal

to 𝑚, so they would be among the smallest trees from 𝑇𝑖 ∈ 𝒯𝑁,𝑏, including the smallest
achievable tree.

As result we get

E(𝑍𝑏(𝑛 + 1) − 𝑍𝑏(𝑛)|ℱ𝑛) =
1

𝑛 + 1

(︁
𝐴𝑏𝑍𝑏(𝑛) − 𝑍𝑏(𝑛) + 𝑌𝑏 + 𝑜(𝑛−1/2)

)︁

where 𝐴𝑏 = 𝐴𝑏(𝑍1(𝑛), . . . , 𝑍𝑏−2(𝑛)) is a lower-triangular matrix with negative elements
on the diagonal and non-negative under the diagonal and 𝑌𝑏 = 𝑌𝑏(𝑍𝑏−1(𝑛)) is a
vector, such that the elements of both 𝐴𝑏 and 𝑌𝑏 are polynomials of 𝑋𝑇𝑖

(𝑛), where
𝑇𝑖 are trees of depth at most 𝑏 − 2 (for 𝐴𝑏) or exactly 𝑏 − 1 (for 𝑌𝑏). Let consider
𝐹𝑏(𝑍1, . . . , 𝑍𝑏) := 𝐴𝑏𝑍𝑏(𝑛) − 𝑍𝑏(𝑛) + 𝑌𝑏 (note that 𝐴𝑏 and 𝑌𝑏 are functions of
𝑍1, . . . , 𝑍𝑏−1 itself). Note that 𝐹𝑏 is deterministic. By induction assumption, there
is a unique solution of the system 𝐹𝑖(𝑧1, . . . , 𝑧𝑖) = 0, 𝑖 = 1, . . . , 𝑏 − 1. Let us define
𝐻𝑏(𝑧𝑏) = 𝐹𝑏(𝑧

*
1 , . . . , 𝑧

*
𝑏−1, 𝑧𝑏). Then 𝐻𝑏(𝑧𝑏) = 0 is a system of linear equations with the

unique root 𝑧*𝑏 since 𝐴𝑏 is lower-triangular with negative elements on the diagonal. Now
let us show that all components of 𝑧*𝑏 are positive. Recall that all elements under the
diagonal of 𝐴𝑏 are non-negative and each (except the first) row has at least one positive
element outside the diagonal (if a tree is not the smallest possible, we could remove
one vertex with its children from it to make it smaller). All components of 𝑌𝑏(𝑧

*
𝑏−1, 𝜌𝑑)

are non-negative as well. Finally, the first element of 𝑌𝑏 is positive since the smallest
max-admissible tree of depth 𝑏 (which corresponds to the first coordinate of 𝑧𝑏) could
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be obtained by drawing edges from a new vertex to the smallest max-admissible trees
of depth 𝑏− 1 and the first coordinate of 𝑧*𝑏−1 is positive by the induction hypothesis.

Let us consider the vector 𝑊𝑏(𝑛) = (𝑍1(𝑛), . . . , 𝑍𝑏(𝑛)). We get that

E(𝑊𝑏(𝑛 + 1) −𝑊𝑏(𝑛)|ℱ𝑛) =
1

𝑛 + 1

(︁
(𝐹1, . . . , 𝐹𝑏) + 𝑜(𝑛−1/2)

)︁
.

The derivative matrix of function (𝐹1, . . . , 𝐹𝑏)(𝑧1, . . . , 𝑧𝑏) is of following form. Around
the diagonal, it has clusters of derivatives of 𝐹𝑖 with respect to 𝑧𝑖, which are lower-
triangular (since 𝐹𝑖 = 𝐴𝑖𝑧𝑖 − 𝑧𝑖 + 𝑌𝑖) with diagonal elements at most −1. Since 𝐹𝑖

depends only on 𝑧1, . . . , 𝑧𝑖, all elements above diagonal clusters are 0. Therefore the
highest eigenvalue of the derivative matrix of (𝐹1, . . . , 𝐹𝑏) is −1 (for all possible process
values). Hence 𝑊𝑏(𝑛) satisfies condition A2 of Theorem 2. Since functions (𝐹1, . . . , 𝐹𝑏)
have second-order derivatives, condition A1 is satisfied as well. To check condition A3
note that if we take

𝐸𝑛+1 = (𝑛 + 1)(𝑊𝑏(𝑛 + 1) − E(𝑊𝑏(𝑛 + 1)|ℱ𝑛)),

then

𝑅𝑛+1 : = (𝑛 + 1)(𝑊𝑏(𝑛 + 1) −𝑊𝑏(𝑛)) − (𝐹1, . . . , 𝐹𝑏) − 𝐸𝑛+1

= (𝑛 + 1)E(𝑊𝑏(𝑛 + 1) −𝑊𝑏(𝑛)|ℱ𝑛) − (𝐹1, . . . , 𝐹𝑏) = 𝑜(𝑛−1/2) a.s.

and

|𝐸𝑛+1| ≤ (𝑛 + 1)|𝑊𝑏(𝑛 + 1) −𝑊𝑏(𝑛)| + (𝑛 + 1)|E(𝑊𝑏(𝑛 + 1) −𝑊𝑏(𝑛)|ℱ𝑛)| ≤ 𝐶

for some constant 𝐶 since the number of maximal trees (on at most 𝑁 vertices) of
depth 𝑏 that the vertex 𝑛 + 1 could impact is bounded from above by a constant,
which results in condition A3. Therefore, due to Theorem 2 𝑊𝑏(𝑛) converges a.s. to
(𝑧*1 , . . . , 𝑧

*
𝑏 ) with the rate 𝑜(𝑛−1/2+𝛿) for any 𝛿 > 0 almost surely.
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ИССЛЕДОВАНИЕ ЧИСЛА МАКСИМАЛЬНЫХ ДЕРЕВЬЕВ В
МОДЕЛИ ПРЕДПОЧТИТЕЛЬНОГО ПРИСОЕДИНЕНИЯ С
ПОМОЩЬЮ СТОХАСТИЧЕСКОЙ АППРОКСИМАЦИИ

Малышкин Ю.А.
Тверской государственный университет, г. Тверь

Московский физико-технический институт, г. Москва

Поступила в редакцию 24.11.2022, после переработки 21.06.2023.

В статье исследуется асимптотическое поведение числа максимальных
деревьев в модели графов предпочтительного присоединения. В пред-
лагаемой модели рассматривается последовательность графов, которая
строится по следующему рекурсивному правилу. Мы начинаем постро-
ение с полного графа на 𝑚 + 1 вершине, 𝑚 > 1. Затем на 𝑛 + 1-ом
шаге мы добавляем вершину 𝑛 + 1 и проводим из нее 𝑚 ребер в раз-
личные вершины, выбранные с вероятностями, пропорциональными их
степеням плюс некоторый положительный параметр 𝛽. В статье полу-
чен результат о скорости сходимости числа максимальных деревьев в
указанной модели с помощью стохастической аппроксимации.

Ключевые слова: случайные графы, предпочтительное присоедине-
ние, стохастическая аппроксимация.
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