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JlaHo n0Ka3aTeIhCTBO OMHON 00Iell MHTerpaJbHON (DOPMYNIBL IS aHAJIM-
TUYECKUX BBIYUCJACHUII MHOI'O-IIETJIEBBIX ArarpaMM cDefIHMaHa B MOIOEJIAX
KBaHTOBOW TEOPUU MOJIH.

The proof of a general integral formula for analytical calculations of multi-
loop Feynman diagrams in quantum field theory models is given.
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1. Introduction

When applying quantum-field theory methods to arbitrary physical problem (e.g.,
in elementary particles physics, condense matter physics, statistical mechanics, critical
dynamics, stochastic dynamics, etc.) the necessity to calculate, in general, multi-loop
Feynman diagrams usually appears [1, 2, 3]. In this respect, the one-loop calculations
are always relatively simple and this fact usually allows to make full analytical analysis
of the problem. Beautiful demonstration of such calculations was given, e.g., in [4],
where a formula for reducing n-point Feynman diagrams to scalar integrals was presen-
ted. On the other hand, the corresponding calculations become much more complicated
when one wants to make similar analysis in two- and/or higher-loop approximation.
Despite the fact that in such a case it is usually impossible to make complete analytical
calculations, nevertheless a general integral formula for reducing of tensor momentum
integrals to scalar ones can be also found. The formula was explicitly shown in [5],
where the formula was present without proof and used in two-loop calculations in field-
theoretic model of passive scalar advected by given turbulent environment. The aim of
the present work is to prove the formula in details.

Thus, in what follows, we shall find and prove an analytical representation for the
following general tensor integrals
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where | and n are natural numbers, k) and a®,i = 1,2,...,1 are vectors in d-

dimensional real Euclidean vector space, kj(-i) denotes j-th component of the vector
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k() v;, is an arbitrary symmetric [ x [ real matrix, ¢ and « are arbitrary real numbers,
d

X -y = Y. a;y; is the scalar product, and integrations are taken over d-dimensional
i=1
Euclidean space.

Before we shall formulate the corresponding theorem let us briefly describe the
process which leads to tensor integrals (1). For simplicity we shall work in the Euclidean
space but the procedure can be directly generalized to the pseudo-Euclidean space.

Typical [-loop Feynman diagram is proportional to the combination of the integrals
of the following type
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where A;,i = 1,...,m are some polyn.omials of the second order with respect to
independent momenta (wave-vectors) k(i = 1,...,] and a4,i = 1,...,m are some,

in general, real numbers. Further, by using the well-known Feynman parametrization
procedure [1, 2], which is given by the following relation
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where §(z) is the Dirac d-function, the integration over momenta k) i = 1,...,1 is
reduced to integrals of the form presented in (1) with the corresponding symmetric real
I x I matrix v, | vectors a’, and some real quantities ¢ and o which are independent
of momenta k® i =1,...,1

Thus, to proceed it is necessary to calculate the general integral (1). It is the subject
of the following theorem which represents the integrals of the form (1) in appropriate
analytical form which is convenient for further analysis.

2. The formula

Theorem: Let V be the d-dimensional Euclidean vector space over the field of real
numbers R. Let I,n € N (natural numbers), and kW, fori=1,2,...,1 are vectors in
V. Then for an arbitrary | x | symmetric real matriz with detv #£ 0, arbitrary vectors
al® (i =1,2,...,1), and arbitrary c,a € R the following general formula holds
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where summation is taken over all simultaneous permutations of couples of indices
r; = {q;,%;},5 = 1,...,n, k§s) and algs) are j-th components of the vectors k®) and
al®) | respectively, 0;; denotes Kronecker delta, v=" is the inverse matriz, |n/2] = n/2
for an even n, and |n/2| = (n —1)/2 for an odd n, and over all dummy indices the
corresponding summation is assumed.

Proof: To prove formula (4) it is appropriate to use mathematical induction. First
of all, the theorem is correct for the scalar case with n = 0. In this specific situation
the formula is well-known (see, e.g., Ref. [3]), namely,
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where, for simplicity, we use the following suitable notation, namely, v;sl = (v 1)s.
This notation will be used within the whole proof.

(q1)

Now, by differentiating both sides of equation (5) with respect to a;'" and by
subsequent replacing a — a — 1, one obtains
k(Ql)
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what is exactly the integral (4) for n = 1.
To proceed it is suitable to define the following notation:
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Further, let us suppose that formula (4) is valid for an even n € N, n > 0, i.e.,
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By differentiating both sides of equation (6) with respect to a(q"“) one obtains
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Now, using the substitution &« — o — 1 and after appropriate algebraic manipulations
one obtains
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what is exactly the formula (4) for odd values of n + 1 (to obtain the exact form as in
(4) it is necessary to make the substitution n + 1 — n).
Now, let us suppose that formula (4) is valid for an odd n € N, n > 1. In this case

the formula (4) obtains the following form (| %] = 25! and n(mod2) = 1):
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(lZn+1)

Again, by differentiating both sides of equation (7) with respect to a; one obtains
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Thus, using the substitution &« — « — 1 and rather cumbersome but straightforward
algebraic and combinatoric manipulations one obtains the final result
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what is exactly equal to formula (4) for even values of n+ 1 (again, to obtain the exact
form as in (4) it is necessary to make the substitution n + 1 — n).

Thus, we prove the formula given in Eq. (4) by using the method of mathematical
induction in two steps. First, from an assumption of validity of the formula for even
values of n we have obtained the formula for odd values of n 4+ 1 and at the second
stage we have obtained the formula for even values of n+1 from assumption of validity
of the formula for odd values of n. B

Therefore, by applying of Feynman parametrization formula (3) to the typical I-loop
integrals (2) and by subsequent application of above proven theorem (4) the integrals
(2) are reduced to the integrals over parameters u;,7 = 1, ..., m which must be analyzed
separately.
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