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Äàíî äîêàçàòåëüñòâî îäíîé îáùåé èíòåãðàëüíîé ôîðìóëû äëÿ àíàëè-
òè÷åñêèõ âû÷èñëåíèé ìíîãî-ïåòëåâûõ äèàãðàìì Ôåéíìàíà â ìîäåëÿõ
êâàíòîâîé òåîðèè ïîëÿ.

The proof of a general integral formula for analytical calculations of multi-
loop Feynman diagrams in quantum �eld theory models is given.
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1. Introduction

When applying quantum-�eld theory methods to arbitrary physical problem (e.g.,
in elementary particles physics, condense matter physics, statistical mechanics, critical
dynamics, stochastic dynamics, etc.) the necessity to calculate, in general, multi-loop
Feynman diagrams usually appears [1, 2, 3]. In this respect, the one-loop calculations
are always relatively simple and this fact usually allows to make full analytical analysis
of the problem. Beautiful demonstration of such calculations was given, e.g., in [4],
where a formula for reducing n-point Feynman diagrams to scalar integrals was presen-
ted. On the other hand, the corresponding calculations become much more complicated
when one wants to make similar analysis in two- and/or higher-loop approximation.
Despite the fact that in such a case it is usually impossible to make complete analytical
calculations, nevertheless a general integral formula for reducing of tensor momentum
integrals to scalar ones can be also found. The formula was explicitly shown in [5],
where the formula was present without proof and used in two-loop calculations in �eld-
theoretic model of passive scalar advected by given turbulent environment. The aim of
the present work is to prove the formula in details.

Thus, in what follows, we shall �nd and prove an analytical representation for the
following general tensor integrals

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in[

l∑
i=1

l∑
s=1

visk(i) · k(s) + 2
l∑

i=1

a(i) · k(i) + c

]α , (1)

where l and n are natural numbers, k(i) and a(i), i = 1, 2, . . . , l are vectors in d-
dimensional real Euclidean vector space, k

(i)
j denotes j-th component of the vector
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k(i), vis is an arbitrary symmetric l× l real matrix, c and α are arbitrary real numbers,
x · y =

d∑
i=1

xiyi is the scalar product, and integrations are taken over d-dimensional
Euclidean space.

Before we shall formulate the corresponding theorem let us brie�y describe the
process which leads to tensor integrals (1). For simplicity we shall work in the Euclidean
space but the procedure can be directly generalized to the pseudo-Euclidean space.

Typical l-loop Feynman diagram is proportional to the combination of the integrals
of the following type

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in

Aα1
1 Aα2

2 · · ·Aαm
m

, (2)

where Ai, i = 1, . . . , m are some polynomials of the second order with respect to
independent momenta (wave-vectors) k(i), i = 1, . . . , l and αi, i = 1, . . . , m are some,
in general, real numbers. Further, by using the well-known Feynman parametrization
procedure [1, 2], which is given by the following relation

1
Aα1

1 Aα2
2 · · ·Aαm

m
=

Γ
( m∑

i=1

αi

)

m∏
i=1

Γ (αi)

∫ 1

0

. . .

∫ 1

0

du1 . . . dum

δ
( m∑

i=1

ui − 1
) m∏

i=1

uαi−1
i

( m∑
i=1

Aiui

) m∑
i=1

αi

, (3)

where δ(x) is the Dirac δ-function, the integration over momenta k(i), i = 1, . . . , l is
reduced to integrals of the form presented in (1) with the corresponding symmetric real
l × l matrix vis, l vectors ai, and some real quantities c and α which are independent
of momenta k(i), i = 1, . . . , l.

Thus, to proceed it is necessary to calculate the general integral (1). It is the subject
of the following theorem which represents the integrals of the form (1) in appropriate
analytical form which is convenient for further analysis.

2. The formula

Theorem: Let V be the d-dimensional Euclidean vector space over the �eld of real
numbers R. Let l, n ∈ N (natural numbers), and k(i), for i = 1, 2, . . . , l are vectors in
V. Then for an arbitrary l × l symmetric real matrix with det v 6= 0, arbitrary vectors
a(i) (i = 1, 2, . . . , l), and arbitrary c, α ∈ R the following general formula holds

∫
. . .

∫
dk(1) . . . dk(l)k

(q1)
i1

k
(q2)
i2

. . . k
(qn)
in[

visk(i) · k(s) + 2a(i) · k(i) + c
]α

=
(−1)nπ

dl
2 (det v)−

d
2

Γ(α)

bn
2 c∑

p=0

Γ
(
α− dl

2 − bn
2 c+ p

) [
c− (v−1)isa(i) · a(s)

]bn
2 c+ dl

2 −α−p

(bn
2 c − p)! (2p + n(mod 2))!4b

n
2 c−p

×
∑

P (r1,r2,...,rn)

(v−1)q1s1a
(s1)
i1

(v−1)q2s2a
(s2)
i2

. . . (v−1)q2p+n(mod 2)s2p+n(mod 2)a
(s2p+n(mod 2))

i2p+n(mod 2)

× δi2p+n(mod 2)+1i2p+n(mod 2)+2(v
−1)q2p+n(mod 2)+1q2p+n(mod 2)+2 . . . δin−1in(v−1)qn−1qn ,(4)
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where summation is taken over all simultaneous permutations of couples of indices
rj = {qj , ij}, j = 1, . . . , n, k

(s)
j and a

(s)
j are j-th components of the vectors k(s) and

a(s), respectively, δij denotes Kronecker delta, v−1 is the inverse matrix, bn/2c = n/2
for an even n, and bn/2c = (n − 1)/2 for an odd n, and over all dummy indices the
corresponding summation is assumed.

Proof: To prove formula (4) it is appropriate to use mathematical induction. First
of all, the theorem is correct for the scalar case with n = 0. In this speci�c situation
the formula is well-known (see, e.g., Ref. [3]), namely,

∫
. . .

∫
dk(1) . . . dk(l)

[
visk(i) · k(s) + 2a(i) · k(i) + c

]α =

π
dl
2 (det v)−

d
2 Γ

(
α− dl

2

)

Γ(α)

[
c− v−1

is a(i) · a(s)
] dl

2 −α

, (5)

where, for simplicity, we use the following suitable notation, namely, v−1
is ≡ (v−1)is.

This notation will be used within the whole proof.
Now, by di�erentiating both sides of equation (5) with respect to a

(q1)
i1

and by
subsequent replacing α → α− 1, one obtains

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1[

visk(i) · k(s) + 2a(i) · k(i) + c
]α

= (−1)
π

dl
2 (det v)−

d
2 Γ

(
α− dl

2

)

Γ(α)

[
c− v−1

is a(i) · a(s)
] dl

2 −α

v−1
q1sa

(s)
i1

,

what is exactly the integral (4) for n = 1.
To proceed it is suitable to de�ne the following notation:

C(i1,...,in;s1,...,st) = v−1
q1s1

a
(s1)
i1

v−1
q2s2

a
(s2)
i2

. . . v−1
qtst

a
(st)
it

δit+1it+2v
−1
qt+1qt+2

. . . δin−1inv−1
qn−1qn

.

Further, let us suppose that formula (4) is valid for an even n ∈ N, n ≥ 0, i.e.,

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in[

visk(i) · k(s) + 2 a(i) · k(i) + c
]α

=
(−1)nπ

dl
2 (det v)−

d
2

Γ(α)

n
2∑

p=0

Γ
(
α− dl

2 − n
2 + p

) [
c− v−1

is a(i) · a(s)
]n

2 + dl
2 −α−p

(n
2 − p)! (2p)! 4

n
2−p

×
∑

P (r1,r2,...,rn)

C(i1,...,in;s1,...,s2p). (6)
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By di�erentiating both sides of equation (6) with respect to a
(qn+1)
in+1

one obtains
∫

. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in

k
(qn+1)
in+1[

visk(i) · k(s) + 2a(i) · k(i) + c
]α+1 =

(−1)n+1π
dl
2 (det v)−

d
2

Γ(α + 1)

×
n
2∑

p=0

Γ
(
α + 1− dl

2 − n
2 + p

) [
c− v−1

is a(i) · a(s)
]n

2 + dl
2 −α−p−1

(n
2 − p)! (2p)!4

n
2−p

× v−1
qn+1sa

(s)
in+1

∑

P (r1,r2,...,rn)

C(i1,...,in;s1,...,s2p)

+
(−1)n+1π

dl
2 (det v)−

d
2

Γ(α + 1)

n
2∑

p=0

Γ
(
α− dl

2 − n
2 + p

) [
c− v−1

is a(i) · a(s)
]n

2 + dl
2 −α−p

(n
2 − p)! (2p)!4

n
2−p+ 1

2

×
∑

P (r1,r2,...,rn)

[
v−1

q1qn+1
δi1in+1 C(i2,...,in;s2,...,s2p)+

+v−1
q2qn+1

δi2in+1 C(i1,i3,...,in;s1,s3,...,s2p)+

+ · · ·+ v−1
q2pqn+1

δi2pin+1 C(i1,...,i2p−1,i2p+1,...in;s1,...,s2p−1)

]
.

Now, using the substitution α → α− 1 and after appropriate algebraic manipulations
one obtains

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in

k
(qn+1)
in+1[

visk(i) · k(s) + 2a(i) · k(i) + c
]α

=
(−1)n+1π

dl
2 (det v)−

d
2

Γ(α)

×
(n+1)−1

2∑
p=0

Γ
(
α− dl

2 − (n+1)−1
2 + p

) [
c− v−1

is a(i) · a(s)
] (n+1)−1

2 + dl
2 −α−p

( (n+1)−1
2 − p)! (2p + 1)!4

(n+1)−1
2 −p

×
∑

P (r1,r2,...,rn+1)

C(i1,...,in+1;s1,...,s2p+1),

what is exactly the formula (4) for odd values of n + 1 (to obtain the exact form as in
(4) it is necessary to make the substitution n + 1 → n).

Now, let us suppose that formula (4) is valid for an odd n ∈ N, n ≥ 1. In this case
the formula (4) obtains the following form (bn

2 c = n−1
2 and n(mod 2) = 1):

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in[

visk(i) · k(s) + 2 a(i) · k(i) + c
]α

=
(−1)nπ

dl
2 (det v)−

d
2

Γ(α)

n−1
2∑

p=0

Γ
(
α− dl

2 − n−1
2 + p

) [
c− v−1

is a(i) · a(s)
]n−1

2 + dl
2 −α−p

(n−1
2 − p)! (2p + 1)! 4

n−1
2 −p

×
∑

P (r1,r2,...,rn)

C(i1,...,in;s1,...,s2p+1). (7)
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Again, by di�erentiating both sides of equation (7) with respect to a
(qn+1)
in+1

one obtains

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in

k
(qn+1)
in+1[

visk(i) · k(s) + 2a(i) · k(i) + c
]α+1 =

(−1)n+1π
dl
2 (det v)−

d
2

Γ(α + 1)

×
n−1

2∑
p=0

Γ
(
α− dl

2 − n−1
2 + p + 1

) [
c− v−1

is a(i) · a(s)
]n−1

2 + dl
2 −α−p−1

(n−1
2 − p)! (2p + 1)!4

n−1
2 −p

× v−1
qn+1sa

(s)
in+1

∑

P (r1,r2,...,rn)

C(i1,...,in;s1,...,s2p+1)

+
(−1)n+1π

dl
2 (det v)−

d
2

Γ(α + 1)

n−1
2∑

p=0

Γ
(
α− dl

2 − n−1
2 + p

) [
c− v−1

is a(i) · a(s)
]n−1

2 + dl
2 −α−p

(n−1
2 − p)! (2p + 1)!4

n−1
2 −p+ 1

2

×
∑

P (r1,r2,...,rn)

[
v−1

q1qn+1
δi1in+1 C(i2,...,in;s2,...,s2p+1)+

+v−1
q2qn+1

δi2in+1 C(i1,i3,...,in;s1,s3,...,s2p+1)+

+ · · ·+ v−1
q2p+1qn+1

δi2p+1in+1 C(i1,...,i2p,i2p+2,...in;s1,...,s2p)

]
.

Thus, using the substitution α → α − 1 and rather cumbersome but straightforward
algebraic and combinatoric manipulations one obtains the �nal result

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in

k
(qn+1)
in+1[

visk(i) · k(s) + 2a(i) · k(i) + c
]α

=
(−1)n+1π

dl
2 (det v)−

d
2

Γ(α)

n+1
2∑

p=0

Γ
(
α− dl

2 − n+1
2 + p

) [
c− v−1

is a(i) · a(s)
]n+1

2 + dl
2 −α−p

(n+1
2 − p)! (2p)!4

n+1
2 −p

×
∑

P (r1,r2,...,rn+1)

C(i1,...,in+1;s1,...,s2p),

what is exactly equal to formula (4) for even values of n+1 (again, to obtain the exact
form as in (4) it is necessary to make the substitution n + 1 → n).

Thus, we prove the formula given in Eq. (4) by using the method of mathematical
induction in two steps. First, from an assumption of validity of the formula for even
values of n we have obtained the formula for odd values of n + 1 and at the second
stage we have obtained the formula for even values of n+1 from assumption of validity
of the formula for odd values of n. ¥

Therefore, by applying of Feynman parametrization formula (3) to the typical l-loop
integrals (2) and by subsequent application of above proven theorem (4) the integrals
(2) are reduced to the integrals over parameters ui, i = 1, . . . , m which must be analyzed
separately.
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