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A derivation of analytical formulas for uniformly magnetized bodies of simple
is given making use of the formalisms of equivalent surface currents or
surface magnetic charges. In contrast to the textbook solutions confined to
some points of symmetry, the general results are given for an arbitrary off-axis
point of observation. Computer combination of the obtained formulas by the
principle of superposition gives an efficient way to examine a large number of
practically important cases, including multipole distributions, ~Halbach
configurations, magnetic bearings, levitation systems, etc.
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b TBepckoii TocyIapCTBEHHBIN YHUBEPCHTET, 1A00PAMOPUsL MACHUMOINEKMPOHUKY
2 TBepckoil rocy1apCTBEHHBIM TEXHUYECKUI YHUBEPCUTET, Kaghedpa mexnHonro2uu
Memanios u Mamepuaio8eoeHus

JlaHbl BBIBOJBI AHATUTHYSCKUX (HDOPMYJT JJI BHEIIHETO MAarHUTHOTO ITOJIS
OJIHOPOJIHO HAMAarHUYEHHBIX TN MPOCTHIX (OPM C HUCHOIH30BAHUEM
(hopMaNM3MOB 3KBHBAJICHTHOI'O COJEHOWJAa W TIOBEPXHOCTHBIX MAarHUTHBIX
3apsaAoB. B oTiudMe OT MPUBOIUMBIX B yUeOHHKAX PEIIeHHH, OTpaHHISHHBIX
OTAETHHBIMI TOYKAMH CHMMETPHH, BBIBOABI CAEIAHBI IS MPOU3BOJBHBIX
BHEOCEBBIX TOYeK HabOmogeHus. KoMmmbploTepHOE KOMOWHHUPOBaHHE TIO
MPUHLUITY CYTEpPHO3UINN TIO3BOJSET HCCIEN0BaTh MHOTHE IPaKTHYECKH
LICHHBIC CIIyYau, BKJIFOYAs MYJIbTUIOJIbHBIC pacHpeieiicHus, KOH(GUTypaiuu
Xanap0axa, MAarHUTHBIC TIOIIUITHUKH, CHCTEMbI JICBUTAIIUH H JP.

Kniouesvle cnoea: pacuém maznumno2o nos, npuHyun cynepno3uyul, 3aKoH
buo-Casapa u Kynoua, sx6usaneHmmsiii cConeHOUO, MAeHUMHbLE 3aPAObL
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Introduction. High-coercivity permanent magnets are widely used in
numerous types of devices. Field calculation of permanent magnets has been
approached in a number of different ways, and over the years many authors
have published sophisticated computer programs and solutions to a large
number of problems. In the present work we offer derivations based only on
the most fundamental laws (those of Biot-Savart and Coulomb) and
numerical integration. As will be seen, the solutions may be simple but cover
many practical cases.

In modern high-coercive rare-earth permanent magnets the residual
magnetization vector, u,M,, is strongly fixed to the easy axis of
magnetization. Consequently the magnetization remains uniform even in the
presence of rather large demagnetizing fields. This rigidity of magnetization
radically simplifies the computation of the fields produced by the magnets
and justifies the application of superposition principles for systems composed
of many elements.

In fact, rare-earth magnets are nearly ideal models of uniformly
magnetized bodies as represented by surface Amperian currents [2] forming
an equivalent solenoid. Thereby Biot-Savart law is applicable to the
calculation of the field of such a body.

This point needs some discussion, because the same body may be
alternatively represented by magnetic poles (charged surfaces). In most
modern textbooks on electricity and magnetism (see e.g. [3]) the current-
current forces, conduction or Amperian, are taken as fundamental, thus
giving the subject a unity not attained by the older magnetic pole concept.
However, as was pointed out by W.F. Brown [4], this unity is an illusion in
several respects, one of which is that the interpretation of an electron spin
moment as an Amperian current has no surer basis than its interpretation as a
pair of poles. Although it has been criticized from a pedagogical point of
view [5], the use of magnetic poles in analogy to electrostatics is firmly
established in research articles and books on ferromagnetism. The problem of
reconciling of the two interpretations has been discussed in detail [4]. In the
following both approaches are considered to be of equal standing and their
application will be demonstrated in parallel.

I1. BASIC RELATIONS. To avoid ambiguity below we write the
basic relations (in SI units) as they will be used in this paper.

The magnetic field due to a linear current element /dl at a distance R
from it is given by the Biot-Savart law

dB:LOI[dIXR]_
An  R3

(1

Assuming that the total flux density (magnetic induction) in the
magnetized medium is given by
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B=po(H+M), )

the direction of the vector of equivalent current density I; (in A m-1) at the
media interface will be defined by the cross product

1, =[M, -M,]xn, (3)

where n is the normal directed from the medium with magnetization M,
toward medium with M, (M; = 0 in vacuo).

Defining the magnetic pole strength (magnetic charge) m; (in webers)
from the Coulomb law

F-= % R (4)
4rnpgR

the magnetic fieldstrength due to magnetic charges uniformly distributed
over a surface element dS will be written as

_odS R

4npy R3

)

where o is the surface charge density given by the dot product
o=po(M;—M,)n. (6)

In a permanent magnet the residual magnetization, poM,, is by
definition equal to the residual induction (remanence), B;. The latter
parameter commonly serves to characterize permanent magnet materials and
will be used in this paper.

ITII. AXISYMMETRICAL BODIES

A. Circular turn and thin walled solenoid

The magnetic field of a circular turn has been recently considered in
detail by Erlichson [1] and for the sake of completeness will be outlined here.
Fig. 1 shows the geometry of the problem. From symmetry, the By,
component at the point of observation P(x, y, z,) has to be zero, so the
problem reduces to the determination of By and B.

In the coordinate form the cross product [dl x R] is given in an obvious
notation by

dl, di,

R, R,

dl
R

ldi. dl.

y di,
R, R

X Ry

X

[d1xR] =i +k

: (7

X z
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whereas R? = zg +x§ +a? —2axg cos¢. Applying the Biot-Savart law and
choosing appropriate expressions for dl and R projections we find

2
_ppl el R ~dL.R,

y oz
B 4r J- R?
0
_ Kol a azo cos Pdo (®)
4n ( 2, 2. 2 )3/2 ’
0\zg +xy +a” —2axycos@
2 2
_ kot fdlny —dl,R, _ Mol f a(a—x, cosQ)do ©)
z 3 /2
4an R 4y [z§ +x§ +a* =2ax, coscp]3

which apart from some difference in notation coincide with the results of
Erlichson [1].

Fig.1. Diagram for
the circular turn. /dl is
the linear  current
element

In proceeding further to the case of a thin-walled solenoid (8) and (9)
should be integrated over the solenoid length 24. Taking into account that the
current of an elementary ring of a height dz is /dz/2h one obtains

h?2
o 1 Jf a(zy —z)cos pdepdz (10)

* T 4n2n

/2
~h 0 [(ZO —2)2 +x§ +a? —2ax, cosq)]3

-20 -



BecmHuk Tel'Y. Cepusi "®u3suka”. 2010. Bbinyck 8

_bo 1 f
z Zjh

2Jgr[ a(a—x, cosQ)dedz . (1D
0

2

(z, —z)2 +Xx; +a? —2ax, coscp]3

Making use of a subsidiary variable u = zq —z(du = —dz) one finds that the

~3/2

integrands in u are of the form wuU ~32 and U where

U= Au®+Bu+C (4, B, C constants). The corresponding integrals are
expressed in terms of elementary functions [6]. With this provision (10) and
(11) reduce to

2=h
_ 2“0611} cos pdo (12)
T 4m 2k [(ZO —zf +x; +a” - 2ax, COS(P]UZ 2=
z=h
_ama 15| (o= sham, cosolde
T 4m 2k 0 [(zo —zf +x; +a° - 2ax, COS(P]W z=—h
z=h
) (z0-2) (13)

/2
(z - 2)2 + xé +a’ - 2ax cos (p]l LN\

Egs. (12) and (13), as well as (8) and (9) (circular turn) could be
expressed in terms of complete elliptic integrals of the first and second kind.
However, following the arguments of Erlichson {1], we recommend here the
numerical solution of these equations by any decent numerical integration
routine.

B. Disk of uniform pole density (Fig. 2)
Making use of (5) and taking into account that the surface element
dS =rdrd@ one arrives at integrals

r=a2lmn

wid |

T 20 [z +x +r2 —2rx coscp]3

x —rCos (p)ra’rd(p

J~ (4C-2B*)r-2BC
475

r=a
1/2
(B2 4C)U1/2 ln‘ZU +2r+B} cos do

r=o
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_2 T xo(2Br+4C) —coscp[(4C—2Bz)r—2BC]
4n (B> —40)U''?

0
r=a
—coscpln‘2U1/2+2r+B‘ dp . (14)
r=0
o T z,rdrde

Bz =— B
4m 2 9 [202 +x, + 71 —2rx, cos (p]3

» (15)

oz, ZI 2Br+4C |
4m o (B> —4C)WU'" |

0 0

where B =-2x(coso, C=x§ +Z§,and U=r*+Br+C.

Fig.2. Diagram for the uniformly charged disk. dS = rdrd¢
is a surface element

As above in this case it was possible to express external integrals over
r in (14) and (15) in terms of elementary functions while the resulting
expressions should be integrated numerically.

It is worthwhile to mention that Egs. (14) and (15) derived for a single
charged disk have meaning only as a one module of a sum over all positively
and negatively charged surfaces constituting the real sample.
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C. Axially magnetized cylinders and rings (Figs. 3, a; b)

Egs. (12) and (13) (thin-walled solenoid ) as well as (14) and (15)
(charged disk) provide the basis for calculations of By and B) field
components of axially magnetized axisymmetrical bodies at any observation
point.

As to the current model, (12) and (13) may be immediately used for
permanent magnet field calculations when the coefficient po//24 outside the
integral sign is replaced by By, permanent magnet remanence.

For the equivalent charge model (Egs. (14) and (15)) the axially
magnetized cylinder should be represented by a pair of oppositely charged
disks at a distance 24 apart from each other with their fields beeing
superimposed for each point of observation. In doing so the coefficient &
should be replaced by By-

Fig.3. Presentation of axisymmetrical magnets (left column) by
Amperian currents (middle column) and surface charges (right
column). (a) — axially magnetized disk, (b) — axially magnetized ring,
(c) —radially  magnetized ring, (d), (¢)— axially and radially
magnetized ring segments, respectively. Hatching indicates the
existence of volume charges in two specific cases of radial
magnetization

In Figs. 3, a and b the current and charge presentation is sketched for
axially magnetized cylinders and rings. For the former case the ring is
represented by two superimposed oppositely magnetized cylinders of equal
height and diameters equal to the outer and inner ring diameter, respectively.
For the charge model the solution is obtained just by substitution of » =g
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(inner ring radius) for the lower limit of integration in Egs. (14) and (15),
while the upper limit » = ay should be standing for the outer ring radius.

D. Radially magnetized rings

The presentation of a ring with radial magnetization frequently used
in microwave devices is illustrated in Fig. 3, ¢ for both models.

In the current model such a ring is represented by two flat spiral
solenoids. The calculation is much the same as above with the difference that
now the integration of the field of a current ring is performed in the radial
direction.

For example, the Bz component of a single flat spiral solenoid will be

given by

a X, COS (p)a’(p

B.= da
4na2 alj '[[a —2axcos@+x, +Zz]3/2

2n

S J.{ 2 - 2, 2 (16)
dnay—a; 7 a”—2ax,cos@+x;, +z,

+1Inla —x, cos<p+\/a2 —2ax, coscp+x02 +zg

Yaca 49,

where a; and a, stand for the inner and outer spiral radius, respectively. To
obtain the total field of the ring (16) should be used twice for two flat spirals
at a distance 24 apart. In doing so the change of the current direction for the
two solenoids should be accounted for as illustrated in Fig. 3, c.

To obtain the similar result by the charge model it is necessary to take
into account volume charges arising inside the ring, because for this specific
case the uniformity of magnetization is violated due to its radial character.
Evidently this requires additional calculational efforts not encountered in the
current model and so will not be considered here.

In addition to the cases considered above Figs. 3, d and e illustrate the
presentation of ring segments, magnetized axially or radially, by both
models. Such segments are widely used in modern brushless motors. It is
seen that their field may be calculated equally well by the methods described
provided appropriate limits of integration corresponding to the radial and
angular segment dimensions are used and the contribution of the lateral
cross-sectional segment sides is taken into account.
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IV. TETRAGONAL PRISMS

A. Rectangular current turn and thin solenoid (Fig. 4).
From the Biot-Savart law (1) and the cross-product expression (7) it
follows that

1 1
dB, =" dl R, dB, =" dl.R.,
4nR 4nR
Mol
dB, = (dI R, —dI,R,), (17)
4nR3 g g

while R* = (x, —x)2 +(y, - y)2 +(z, - 2)2 .

Xo=X

Fig. 4. Diagram for the rectangular current turn

Integrating (17) over the sides of the turn from -a to a and -b to b
followed by integration over the height 2/ of a thin solenoid based on this
turn one obtains simple expressions in terms of elementary functions as

follows:
B,

Mo 1l f B(Zo —Z)dZ 2
\ 4m 2h n laz +(z —z)2 L/ocz +B2 +(zo —2)2 o
B, (18)

o

B, Va2

) {(ln(mm)j: L ,

1
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B, = —;‘;;h l:(ln[owm/ocz 4 B2 ”2))% Tz yz, (19)

% g, .
=_“7OL jz ofdz
Am 22 B2 4 (z, —2)* o + B2 + (29— 2)°

h
+

opdz o, B
o I8 (20)
o +(zy—2) 1o + B2 +(zg—2)2 i

B T2
o, |72
u, 1 y+«/a2+82+y2
=—"0 | tan™! ,
4n 2h of
“dp,

where o, 3 and y are standing for the limits of definite integrals implying that

{[f(a,s,v)if Ef }yz = floaBava) = f(eBara) = fleaByrya)

Vi

+ f(ouBrya)— floaBoyi )+ flaaBay)+ f(eaBiyi)— f(ouBiyy)

where oy, =xta,B),=y,+tb,z1,=2z+h (+ and -signs apply to
subscripts 1 and 2, respectively).

Fortunately, it was possible to perform triple integration in the above
derivation in closed form, hence the expressions (18) - (20) are exact [7].
According to the Coulomb law (5) the magnetic fieldstrength of a

surface element dS = dxdy is

R
dB = dedyF

Integration over the sides of the sheet from -a to a and -b to b yields

B, :;{In(ﬁ+\/a2 B2+ (z, - 2) HGE Q1)

&
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By = :t{[ln(oc + \/az + B2 + (zo - 2)2 H“z }Bz )

4,

B. Rectangular sheet of uniform pole density (Fig. 5)

Fig. 5. Diagram for the rectangular sheet of uniform pole
density +o

o, 1

] tan
2 4r

B

-1 (0
e 4B +(z, - 2 « g

B

where o> and 1, have the same meaning as above.

(22)

(23)

C. Tetragonal prismatic magnet: axial and inclined magnetization
A scheme representing the axially magnetized tetragonal prisms by

currents or charges is given in Fig. 6, a.

The interpretation is similar to cylinders shown in Fig. 3, a, namely
rectangular solenoid formulas (18-20) are ready for use immediately after

replacing o //2h by the remanence B,, while for the charge model a

superposition of the field from two distant oppositely charged sheets should
be performed with replacing surface charge density ¢ by B, in formulas (21)-
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(23). With this provision (21) and (22) (Bx and By, components) get exactly
the same form as (18) and (19) ( current model), while B; is expressed as

az BZ
B op ] : (24)

B, =""| tan™!
4n ol +B% +y?

&y
1

“ ?} N @ +o=tp0M

Imi=Mcosqy, Im2=Msing,

B cCOSp

Fig. 6. Presentation of prismatic magnets (left column) by
Amperian currents (middle column) and surface charges (right
column). See comments in the text

Both. models appear to be universal enough to describe a rather
special case of magnetization inclined with respect to the prism edges. A
specific case of M rotation by an angle ¢ in the ZY plane is illustrated in
Fig. 6, b. Two superimposed solenoids with orthogonal magnetization
directions appear to be adequate for the description of this case provided
appropriate magnetization values are ascribed to each of them, while four
charged sheets should be used to this end with the charge model. In the
general case of ¢ arbitrary (not shown in the figure) three superimposed
solenoids or six charged sheets are needed.

Still another application of the models to triangular prisms is depicted
in Fig. 6, c. Such triangular prisms are effective as building blocks in some
modern permanent magnet systems [8-9].

Fig. 7 shows how the magnetization orientation in two adjacent
rectangular blocks affects the total B, field at some distance above the
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magnets. It is seen that B passes through a maximum with the change of
abs(¢) from zero to m/2. A three-fold increase in the peak value of B; is
observed when ¢ = 70° thus demonstrating the performance improvement
obtainable in the so-called convergent magnet structure [10].

B, (Tesla)

0.8

0.6

0.2

©
o

o
N

©
~

s 4 2 2 4 0 1 2 2 4 s
y (mm)

Fig. 7. Variation of the B, field near the upper surface

(60 = 0.2 mm) of a convergent magnet structure as dependent on

the orientation of magnetization in adjacent blocks. For ¢ =0

the system behaves like a single magnet, otherwise a maximum

in B, occurs. 2a =15,2b=10,2h =5 mm, B,=0.9 T.

V. DISCUSSION AND CONCLUSION

The above given derivations show that both current and charge
models may be in principle equally well employed to the description of
various permanent magnet configurations. Some advantages may be found in
a particular model from the mathematical point of view or when keeping up
the tradition is desirable. For example, the current model requires simpler
mathematics when axisymmetrical bodies are considered. On the other hand
we find the charge model more convenient in the analysis of complex
polygonal shapes. Also the charge model is by tradition almost exclusively
employed in a such well-developed field of research as magnetic domain
theory [11-13].

Juxtaposing the two models provides a very instructive insight into
the problem of external and internal field of magnetized bodies. To illustrate
this important matter in Fig. 8 we present the field distribution for a cubic
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sample (magnetized along the Z-direction) as obtained by two methods
[Egs. (20) and (24)].

The external field is exactly the same for both presentations, whereas
inside the sample only By field components coincide with each other. As to
the B, components they differ inside the sample exactly by the value of poM,
in full accordance with basic relation (2). In other words, the current model
gives the B value everywhere, while it is the subsidiary vector quantity poH
that is given by the charge model [14]. At the same time By and By remain
the same for both approaches because for this particular —case
HoMy = poMy = 0. This arguments explain why the formulas for By and By,
are the same when different models are applied to tetragonal prisms. In
contrast, similar pair of formulas (12) and (14) (cylinders) are of markedly
different appearance. We were not able to bring them into the same form

analytically. However, the numerical check confirmed their full consistency
with the above deduction within the error of integration.

P

+800 Pels %1z
= [~

+600

X
o
o

SO, K
SIS KERRR]
RIS ‘:vﬂgggsg

SO
SRS
SRRk
SRRERk

SRR

KB
+200 e

o

-200

B,, u,H, (millitesla)

Fig. 8. Magnetic induction B, and field intensity H, in the
central XZ plane for a 10x10x10 mm Z-magnetized cube as
calculated by equivalent current (upper graph) and charge
(lower graph) formalisms. The values are the same outside the
body and differ exactly by pM.=B,=0.8 T (M,=M,=0) inside
it. Dashed surface in the inset indicates the observation plane

The inside poH derived by any model (to obtain poH inside the
sample by the current model just subtract pyM from B) is in fact the so-called
self-demagnetizing field. It is worthwhile to recall that in non-ellipsodal
bodies the demagnetizing field is not uniform [15]. This fact is generally
accounted for by introducing a ballistic (averaged over the central cross-
section) and magnetometric (averaged over the whole sample volume)
demagnetizing factors [26]. These may be computed provided poH is
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characterized locally inside the sample. In this way we were able to
reproduce exactly the known tables of demagnetizing factors for cylinders
and rectangular prisms derived otherwise in a more complex fashion.
Evidently other magnet shapes may be characterized in the same way.

Still another application of the results presented is connected to the
calculation of both external and internal fields arising from magnetic
domains. To this end we may think of a magnetic domain as a permanent
magnet. This is justified because generally the domain wall thickness is small
compared to the domain size. With this provision the above derivations may
be directly applied to a variety of magnetic domain structures. An illustration
of this approach to the analysis of some typical domain structures is given in
Fig.o9.

In=M to=tpuM

(b)

Fig. 9. Presentation of some typical domain structures (DS) by
Amperian currents and magnetic charges. (a) Kittel-type stripe 180°
DS, (b) cylindrical (bubble) DS, (c) closed 90° DS in a crystal having
cubic anisotropy

The final remark completing the discussion is that the results given
also may be applied to the calculation of permanent magnet systems
including magnetically soft elements, e.g. back iron. In doing so the method
of images well known in electrostatics [3] may be succesfully exploited
assuming. infinite magnetic permeability of the backing elements. With this
provision the problem reduces to that of summing up the contribution of a
series of regularly positioned images of the main magnet by the same
formula. The sum of the first n terms of such a series differs numerically
from the total sum by less than the absolute value of the (n+1)-th term.
Usually n of the order of 5-10 is sufficient to obtain adequate accuracy in
good accordance with experiment.
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In conclusion, we have demonstrated that straightforward calculations
of a variety of permanent magnet configurations is feasible from the first
principles given by the fundamental laws supported by simple numerical
techniques. The calculational details presented have not previuosly been
available in a single paper.

The results of this study may be used either at the introductory
courses in electromagnetism or at advanced level of training, appealing to
students who, while lacking experience in more sophisticated aspects of
magnetic field calculations, find the more elementary approach
unsatisfactory.
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Appendix

For ready reference the above derived general formulas are written
below for particular cases of the B, field component on the magnet Z-axis, as
a function of coordinate zy, when the solutions are greatly simplified.

Circular turn of radius a:

2

9 I a
B! yO(Zo):Hg (a2+22)3/2 .
0

Charged disk of radius a:

ol oz
2 (a +zo)

Axially magnetized cylinder of height 2h:

)=

Y,=z,—h
S B
Bf_y_o(zo)zjr 5 Y2 /2
(a Y )l Y, =z,+h
Axially magnetized ring:
Y,=z,—h
aZ
B e)= T e
2 ( 2, 2)‘/2
! ! G )y =z, +h
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where a; = inner, a, = outer ring radius.

Flat spiral solenoid:

Bx:y:O _ Ho NI
z (ZO) 2 ay —a

a,

X —2612/2+1n(a+«/a2+y2) ,
(@ +72) a

where N = number of turns.

Radially magnetized ring:
B0z )= B (1_1]_(1_1J LY (E2Y
o) 2 { & & G G +n(1+C2)(1+§1)

a12+ h¥ z, / _a2+(h120)
[ ( )2]l 2 [ ) 2]1/2
a , Cip = a ,

|

&ip=

where - and + signs apply to subscripts 1 and 2, respectively.

Rectangular current turn 2a x 2b:

o I ab 1 1
Bx—y—O — Ho +
z (Zo) T (a2+b2+zg)]/2 b2+z§ a2+25

Rectangular charged sheet 2a'x 2b:

ab

Zo«la2 +b? +Zg

HoHI™=0(20)="2 tan”!

Tetragonal prism 2a x 2b x 2h:

Y,=z,—h
2 2 2
B;W(z()):-Br[tanl e eotey ]
s

ab

b

Y, =z,+h

Y,=z,—h
MOH;:yIO(Zo)Z Br[tan1 ab ] .
Y

n Ja? +b% +y?

Part of these formulas may be found in standard texbooks on
electromagnetism. However, here they arrive from the simplification of

Y, =2,+h
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corresponding general equations rather than from direct elementary

derivation.
References
1. Erlichson H. The magnetic field of a circular turn /Am. J. Phys. 1989.

10.

1.

12.
13.

V. 57.P.607-610.

The illustration of magnetized cylinder with molecular currents
cancelling each other inside the body and leaving uncompensated surface
current is recuring in textbooks perhaps from the times of Ampere. But
for the cylinder in contrast to the ellipsoid it is hardly at all to expect that
this presentation has been ever justified experimentally before the
invention of high-coercivity materials, because older types of permanent
magnets are characterized by pwoHc<poMy, hence in an open magnetic
circuit the cylinder self-demagnetizing field disturbs the magnetization
thus giving rise to volume currents in addition to surface ones.

Feynman R. P., Leighton R. B., Sands M. The Feynman Lectures on
Physics // Addison Wesley, Reading, MA. 1964. V.11 (umeetcs pycckuit
nepeBoa: Peitnman P., Jleitton P., Counc M. deitHMaHOBCKUE JIEKITUU
no ¢usuke. Tom 5: DnektpuyectBo M MarHetusMm. IlepeBox c
AHTJIMICKOTO (M31anue 3).

Brown W.F. Magnetostatic Principles in Ferromagnetism // North-
Holland Publ.Co. Amsterdam. 1962.

Warburton F. W. The magnetic pole, a useless concept //Am. Phys.
Teacher (Am. J. Phys.). 1934. V. 2. P. 1-6.

Dwight H. B., Tables of integrals (MacMillan, New York, 1961)
(umeercs pycckuil nepeson: JBaiit I'.b. Tabnuiel HHTETpaIoB U Apyrue
matematuueckue Gopmynsl. M.: Hayka, 1977).

summation formula tan"'x - tan’'y = tan[(x-p)/(1+xp)] (x>0, y>0) is
helpful when folding the final expression (20) for B..

Leupold H. A., Tilak A. S., Potenziani E. II, Tapered fields in cylindrical
and spherical spaces // IEEE Trans. Magn. 1992. V. 28. P. 3045-3047.
Abele M. G. Linear theory of yokeless permanent magnets // J. Magn.
Magn. Mater. 1990. V. 83. P. 276-278.

Blazek Z., Landa V., Novak P. Permanent magnets with convergent
anisotropic structure // J. Phys. 1985. V. 46. P. C. 295-C298.

Kooy C., Enz U. Experimental and theoretical study of the domain
configuration in thin layers of BaFe ;0,9 // Philips Res. Reports. 1960.
V. 15.P. 7-29.

Hubert A., Schafer R. Magnetic Domains, Springer, Berlin, 1998.
O'Handley R.C. Modern Magnetic Materials Principles and Applications.
Wiley Interscience, 1999.

-34 -



BecmHuk Tel'Y. Cepusi "®u3suka”. 2010. Bbinyck 8

14. Parcell E. Electricity and Magnetism. // McGraw-Hill. New York. 1965
(mmeetcst pycckuit epeBos: [lapcemn D. bepkneeBckuii Kypc JEKITHIA:
anektpudecTBo U MarHeTusM (Tom 2). M.: 1965.

15. Joseph R. I., Schlomann E. Demagnetizing field in nonellipsoidal bodies
//'J. Appl. Phys. 1965. V. 36. P. 1579-1593.

06 agmopax:

KYCTOB Muxaun CepreeBud — Hay4HbIM COTPYIJHUK WHCTUTYTa
Heens, I'peno6nb (Opanims);

JAPYUHA Mapes BukropoBHa — MarucTpanT Kadeapbl MPUKIATHON
¢busuku TBI'Y, sabiomoon@mail.ru;

MUXAWIOBA Oumbra OneroBHa — MarucTpaHT Kadeapsl
npukiagHon ¢uszuku TBI'Y;

[NIOJIAKOB MUnpst T'eHHagbeBWY — cTyAGHT  Kadempwl  oOmiei
¢usuku TBI'Y;

WMIIbAIIEHKO Cgernana EBrenpeBHa — KaHauaatr (U3.-MaT. HayK,
JOTIEHT Kadeapsl TEXHOJOTUM MeETauioB W MmatepuasioBeneHus TITY,
Svllyashenko@yandex.ru;

I'PEUNILKHH PoctucnaB MuxaiinoBud —KaHauaat ¢us.-MatT. HayK,
npodeccop kadeapsl npuxaaanoit puzuxu TBL'Y, rmgrech@yandex.ru.

-35 -



	III. AXISYMMETRICAL BODIES
	D. Radially magnetized rings
	IV. TETRAGONAL PRISMS
	C. Tetragonal prismatic magnet: axial and inclined magnetization
	V. DISCUSSION AND CONCLUSION
	Appendix



