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A derivation of analytical formulas for uniformly magnetized bodies of simple 
is given making use of the formalisms of equivalent surface currents or 
surface magnetic charges. In contrast to the textbook solutions confined to 
some points of symmetry, the general results are given for an arbitrary off-axis 
point of observation. Computer combination of the obtained formulas by the 
principle of superposition gives an efficient way to examine a large number of 
practically important cases, including multipole distributions, Halbach 
configurations, magnetic bearings, levitation systems, etc.  
Keywords: magnetic field calculations, superposition principle, Bio-Savart 
and Coulomb law, equivalent solenoid, magnetic pole formalism 
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СОЛЕНОИДА И МАГНИТНЫХ ЗАРЯДОВ 
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С. E. Ильяшенко с), Р. М. Гречишкин b)

a) Insitut Néel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble, France 
b) Тверской государственный университет, лаборатория магнитоэлектроники 
с) Тверской государственный технический университет, кафедра технологии 

металлов и материаловедения 
 

Даны выводы аналитических формул для внешнего магнитного поля 
однородно намагниченных тел простых форм с использованием 
формализмов эквивалентного соленоида и поверхностных магнитных 
зарядов. В отличие от приводимых в учебниках решений, ограниченных 
отдельными точками симметрии, выводы сделаны для произвольных 
внеосевых точек наблюдения. Компьютерное комбинирование по 
принципу суперпозиции позволяет исследовать многие практически 
ценные случаи, включая мультипольные распределения, конфигурации 
Хальбаха, магнитные подшипники, системы левитации и др. 
Ключевые слова: расчёт магнитного поля, принцип суперпозиции, закон 
Био-Савара и Кулона, эквивалентный соленоид, магнитные заряды 
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Introduction. High-coercivity permanent magnets are widely used in 
numerous types of devices. Field calculation of permanent magnets has been 
approached in a number of different ways, and over the years many authors 
have published sophisticated computer programs and solutions to a large 
number of problems. In the present work we offer derivations based only on 
the most fundamental laws (those of Biot-Savart and Coulomb) and 
numerical integration. As will be seen, the solutions may be simple but cover 
many practical cases. 

In modern high-coercive rare-earth permanent magnets the residual 
magnetization vector, μ0Mr, is strongly fixed to the easy axis of 
magnetization. Consequently the magnetization remains uniform even in the 
presence of rather large demagnetizing fields. This rigidity of magnetization 
radically simplifies the computation of the fields produced by the magnets 
and justifies the application of superposition principles for systems composed 
of  many elements.  

In fact, rare-earth magnets are nearly ideal models of uniformly 
magnetized bodies as represented by surface Amperian currents [2] forming 
an equivalent  solenoid. Thereby Biot-Savart law is applicable to the 
calculation of the field of such a body. 

This point needs some discussion, because the same body may be 
alternatively represented by magnetic poles (charged surfaces). In most 
modern textbooks on electricity and magnetism (see e.g. [3]) the current-
current forces, conduction or Amperian, are taken as fundamental, thus 
giving the subject a unity not attained by the older magnetic pole concept. 
However, as was pointed out by W.F. Brown [4], this unity is an illusion in 
several respects, one of which is that the  interpretation of an electron spin 
moment as an Amperian current has no surer basis than its interpretation as a 
pair of poles. Although it has been criticized from a pedagogical point of 
view [5], the use of magnetic poles in analogy to electrostatics is firmly 
established in research articles and books on ferromagnetism. The problem of 
reconciling of  the two interpretations has been discussed in detail [4]. In the 
following both approaches are considered to be of equal standing and their 
application will be demonstrated in parallel. 

II. BASIC RELATIONS. To avoid ambiguity below we write the 
basic relations (in SI units) as they will be used in this paper.  

The magnetic field due to a linear current element Idl at a distance R 
from it is given by the Biot-Savart law  

[ ].
4 3
0

R
dId RlB ×

π
μ

=     (1) 

Assuming that the total flux density (magnetic induction) in the 
magnetized medium is given by  
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)(0 MHB +μ= ,    (2) 

the direction of the vector of equivalent current density Im (in A m-1) at the 
media interface will be defined by the cross product 

[ nMMI ]×−= 21m ,    (3) 

where n is the normal directed from the medium with magnetization M1 
toward medium with M2 (M2 = 0 in vacuo). 

Defining the magnetic pole strength (magnetic charge) m1 (in webers) 
from the Coulomb law 

 
4 3

0

21 RF
R

mm
πμ

=     (4) 

the magnetic fieldstrength due to magnetic charges uniformly distributed 
over a surface element dS will be written as  

 
4 3

0 R
dSd RH
πμ
σ

=     (5) 

where σ is the surface charge density given by the dot product 

( )nMM 210 −μ=σ .    (6) 

In a permanent magnet the residual magnetization, μ0Mr, is by 
definition equal to the residual induction (remanence), Br. The latter 
parameter commonly serves to characterize permanent magnet materials and 
will be used in this paper. 

 

III. AXISYMMETRICAL BODIES 
 

A. Circular turn and thin walled solenoid 
The magnetic field of a circular turn has been recently considered in 

detail by Erlichson [1] and for the sake of completeness will be outlined here. 
Fig. 1 shows the geometry of the problem. From symmetry, the By 
component at the point of observation P(x0, y0, z0) has to be zero, so the 
problem reduces to the determination of Bx and Bz. 

In the coordinate form the cross product [dl × R] is given in an obvious 
notation by 

yx

yx

zx

zx

zy

zy

RR
dldl

RR
dldl

RR
dldl

d kjiRl +−=× ][ ,  (7)  
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whereas . Applying the Biot-Savart law and 
choosing appropriate expressions for dl and R projections we find 

ϕ−++= cos2  0
22

0
2
0

2 axaxzR

∫
π −

π
μ

=
2

0
3

0
4 R

RdlRdlIB yzzy
x  

( )
 

cos2

cos
4

2

0
2/3

0
22

0
2
0

00 ∫
π

ϕ−++

ϕϕ
π

μ
=

axaxz

dazI ,    (8) 

 

[ ]∫∫
ππ

ϕ−++

ϕϕ−
π

μ
=

−

π
μ

=
2

0
2/3222

2

0
3

cos2

)cos(
44

ooo

ooxyyxo
z

axaxz

dxaaI
R

RdlRdlIB    (9) 

which apart from some difference in notation coincide with the results of 
Erlichson [1]. 

 

Rz

P(xo,yo,zo)

R

Z

a

Ry

Idl

Rx

ϕ dϕ
X Y

 

F i g . 1.  Diagram for 
the circular turn. Idl is 
the linear current 
element 

 In proceeding further to the case of a thin-walled solenoid (8) and (9) 
should be integrated over the solenoid length 2h. Taking into account that the 
current of an elementary ring of a height dz is Idz/2h one obtains 

( )[ ]∫ ∫
−

π

ϕ−++−

ϕϕ−
π

μ
=

h

h
x

axaxzz

dzdzza
h
IB

2

0
2/3

0
22

0
2

0

00

cos2

cos)(
24

 (10) 
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[ ]∫ ∫
−

π

ϕ−++−

ϕϕ−
π

μ
=

h

h ooo

oo
z

axaxzz

dzdxaa
h
IB

2

0
2/3222 cos2)(

)cos(
24

. (11) 

 
Making use of a subsidiary variable ( )dzduzzu −=−= 0  one finds that the 

integrands in u are of the form 23−uU  and 23−U , where 
 (A, B, C constants). The corresponding integrals are 

expressed in terms of elementary functions [6]. With this provision (10) and 
(11) reduce to  

CBuAuU ++= 2

( )[ ]  
cos2

cos
24

2
2/1222∫

π
=
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cos2
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 Eqs. (12) and (13), as well as (8) and (9) (circular turn) could be 
expressed in terms of complete elliptic integrals of the first and second kind. 
However, following the arguments of Erlichson [1], we recommend here the 
numerical solution of these equations by any decent numerical integration 
routine. 
 

B. Disk of uniform pole density (Fig. 2) 
Making use of (5) and taking into account that the surface element 

 one arrives at integrals ϕ= rdrddS

( )
[ ]
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4
     (15) 

where ϕ−= cos2 0xB , , and . 2
0

2
0 zxC += CBrrU ++= 2

 

P(xo,yo,zo)

r

Ry

dS

Z

Rz

R

a

dr

+σ

X Y
Rx

ϕ dϕ

 
 

F i g . 2.  Diagram for the uniformly charged disk.  
is a surface element 

ϕ= rdrddS

 
 
As above in this case it was possible to express external integrals over 

r in (14) and (15) in terms of elementary functions while the resulting 
expressions should be integrated numerically. 

It is worthwhile to mention that Eqs. (14) and (15) derived for a single 
charged disk have meaning only as a one module of a sum over all positively 
and negatively charged surfaces constituting the real sample. 
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C. Axially magnetized cylinders and rings (Figs. 3, a; b) 
Eqs. (12) and (13) (thin-walled solenoid ) as well as (14) and (15) 

(charged disk) provide the basis for calculations of Bx and By field 
components of axially magnetized axisymmetrical bodies at any observation 
point.  

As to the current model, (12) and (13) may be immediately used for 
permanent magnet field calculations when the coefficient μ0I/2h outside the 
integral sign is replaced by Br, permanent magnet remanence. 

For the equivalent charge model (Eqs. (14) and (15)) the axially 
magnetized cylinder should be represented by a pair of oppositely charged 
disks at a distance 2h apart from each other with their fields beeing 
superimposed for each point of observation. In doing so the coefficient σ 
should be replaced by Br. 

 

(a)

(b)

(c)

(d)

(e)

 
F i g . 3. Presentation of axisymmetrical magnets (left column) by 
Amperian currents (middle column) and surface charges (right 
column). (a) – axially magnetized disk, (b) – axially magnetized ring, 
(c) – radially magnetized ring, (d), (e) – axially and radially 
magnetized ring segments, respectively. Hatching indicates the 
existence of volume charges in two specific cases of radial 
magnetization 
 

In Figs. 3, a and b the current and charge presentation is sketched for 
axially magnetized cylinders and rings. For the former case the ring is 
represented by two superimposed oppositely magnetized cylinders of equal 
height and diameters equal to the outer and inner ring diameter, respectively. 
For the charge model the solution is obtained just by substitution of 1ar =  
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(inner ring radius) for the lower limit of integration in Eqs. (14) and (15), 
while the upper limit 2ar =  should be standing for the outer ring radius.  

 

D. Radially magnetized rings 
The presentation of a ring with radial magnetization frequently used 

in microwave devices is illustrated in Fig. 3, c for both models. 
In the current model such a ring is represented by two flat spiral 

solenoids. The calculation is much the same as above with the difference that 
now the integration of the field of a current ring is performed in the radial 
direction. 

For example, the Bz component of a single flat spiral solenoid will be 
given by 

( )
[ ]

,}cos2cosln
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0
2/32212
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=
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ϕϕ−
−π
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=

=
=

π
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∫

∫∫

dzxaxaxa

zxaxa
a

aa
I

zxaxa

dxaada
aa

IB

aa
aaoooo

o ooo

o

oo

o
a

a

o
z

  (16) 

where a1 and a2 stand for the inner and outer spiral radius, respectively. To 
obtain the total field of the ring (16) should be used twice for two flat spirals 
at a distance 2h apart. In doing so the change of the current direction for the 
two solenoids should be accounted for as illustrated in Fig. 3, c. 

To obtain the similar result by the charge model it is necessary to take 
into account volume charges arising inside the ring, because for this specific 
case the uniformity of magnetization is violated due to its radial character. 
Evidently this requires additional calculational efforts not encountered in the 
current model and so will not be considered here. 

In addition to the cases considered above Figs. 3, d and e illustrate the 
presentation of ring segments, magnetized axially or radially, by both 
models. Such segments are widely used in modern brushless motors. It is 
seen that their field may be calculated equally well by the methods described 
provided appropriate limits of integration corresponding to the radial and 
angular segment dimensions are used and the contribution of the lateral 
cross-sectional segment sides is taken into account. 
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IV. TETRAGONAL PRISMS 
 
A. Rectangular current turn and thin solenoid (Fig. 4). 
From the Biot-Savart law (1) and the cross-product expression (7) it 

follows that  

,
4 3 zy

o
x Rdl

R
IdB

π
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=   ,

4 3 zx
o

y Rdl
R
IdB

π
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=  

),(
4 3 xyyx

o
z RdlRdl

R

I
dB −

π

μ
=    (17) 

while ( ) ( ) ( )20
2

0
2
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2 zzyyxxR −+−+−= . 
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Ry

yo-y

2b
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Y2aX

xo-x  
 

F i g .  4. Diagram for the rectangular current turn 
 
Integrating (17) over the sides of the turn from -a to a and -b to b 

followed by integration over the height 2h of a thin solenoid based on this 
turn one obtains simple expressions in terms of elementary functions as 
follows:  

( )
( )[ ] ( )

                ,ln
24

224

2

1

2

1

2

1

2

1

2

1

222

2222

γ

γ

β

β

α

α

β

β

α

α−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ γ+β+α+β

π
μ

−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+β+α−+α

−β
π

μ
−= ∫

h
I

zzzz

dzzz
h
IdB

o

h

h oo

oo
x

 (18) 

 - 25 -



На
уч
на
я б
иб
ли
от
ек
а Т
вГ
У

Вестник ТвГУ. Серия "Физика". 2010. Выпуск 8 
 

,ln
24

2

1

2

1

2

1

222

γ

γ

β

β

α

α ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ γ+β+α+α

π
μ

−=
h
IB o

y  (19) 

 ,tan
24

])
)(])([

)(])([
[(

24

2

1

2

1

2

1

2

1

2

1

222
1

2
0

2222

2
0

2222

γ

γ

β

β

α

α

−

β
β

α
α

−

−

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

αβ
γ+β+α+γ

π
μ

−=

−+β+α−+α

αβ
+

−+β+α−+β

αβ
π

μ
−=

∫

∫

h
I

zzzz

dz

zzzz

dz
h
IB

o

h

h o

h

h o

o
z

 (20) 

where α, β and γ are standing for the limits of definite integrals implying that 
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where hzzbyax o ±=±=β±=α 2,12,11,2  , ,  (+ and – signs apply to 
subscripts 1 and 2, respectively). 

 
Fortunately, it was possible to perform triple integration in the above 

derivation in closed form, hence the expressions (18) - (20) are exact [7]. 
According to the Coulomb law (5) the magnetic fieldstrength of a 

surface element dS = dxdy is 

3R
dxdyd RB σ=  

Integration over the sides of the sheet from -a to a and -b to b yields 
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B. Rectangular sheet of uniform pole density (Fig. 5)  
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F i g .  5. Diagram for the rectangular sheet of uniform pole 
density +σ 
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where α1,2 and β1,2  have the same meaning as above. 
 

C. Tetragonal prismatic magnet: axial and inclined magnetization 
A scheme representing the axially magnetized tetragonal prisms by 

currents or charges is given in Fig. 6, a. 

The interpretation is similar to cylinders shown in Fig. 3, a, namely 
rectangular solenoid formulas (18-20) are ready for use immediately after 
replacing hI 20μ  by the remanence BBr, while for the charge model a 
superposition of the field from two distant oppositely charged sheets should 
be performed with replacing surface charge density σ by BrB  in formulas (21)-
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(23). With this provision (21) and (22) (Bx and By components) get exactly 
the same form as (18) and (19) ( current model), while Bz is expressed as 

.tan
4

2

1

2

1

222
1

β

β

α

α

−
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⎪
⎬

⎫
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⎪
⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

γ+β+αγ

αβ
π

= r
z

BB   (24) 

 
 

Im=M

σsinα

+

±σ=±μoM

σcosαα

-σ

σcosβ

-σcosα
Im1=Mcosα Im2=Msinα

β

(a)

(b)

(c)
Im=M

σcosβ

-σsinα

 
F i g . 6. Presentation of prismatic magnets (left column) by 
Amperian currents (middle column) and surface charges (right 
column). See comments in the text 

 

Both models appear to be universal enough to describe a rather 
special case of magnetization inclined with respect to the prism edges. A 
specific case of M rotation by an angle ϕ in the ZY plane is illustrated in 
Fig. 6, b. Two superimposed solenoids with orthogonal magnetization 
directions appear to be adequate for the description of this case provided 
appropriate magnetization values are ascribed to each of them, while four 
charged sheets should be used to this end with the charge model. In the 
general case of ϕ arbitrary (not shown in the figure) three superimposed 
solenoids or six charged sheets are needed. 

Still another application of the models to triangular prisms is depicted 
in Fig. 6, c. Such triangular prisms are effective as building blocks in some 
modern permanent magnet systems [8-9]. 

 
Fig. 7 shows how the magnetization orientation in two adjacent 

rectangular blocks affects the total Bz field at some distance above the 
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magnets. It is seen that Bz passes through a maximum with the change of 
abs(ϕ) from zero to π/2. A three-fold increase in the peak value of Bz is 
observed when ϕ ≅ 70o thus demonstrating the performance improvement 
obtainable in the so-called convergent magnet structure [10]. 

ϕ  -ϕ

Z

2a

2b
X

-5 -4 -3 -2 -1 0 1 2 3 4 5
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0.0

0.2
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90o
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30o

20o

10o

0o

Bz (Tesla)

y (mm)

Y
2h

 
F i g .  7. Variation of the BBz field near the upper surface 
(δ = 0.2 mm) of a convergent magnet structure as dependent on 
the orientation of magnetization in adjacent blocks. For ϕ = 0 
the system behaves like a single magnet, otherwise a maximum 
in BzB  occurs. 2a = 15, 2b = 10, 2h = 5 mm, BBr = 0.9 T. 
 
 

V. DISCUSSION AND CONCLUSION 
 
The above given derivations show that both current and charge 

models may be in principle equally well employed to the description of 
various permanent magnet configurations. Some advantages may be found in 
a particular model from the mathematical point of view or when keeping up 
the tradition is desirable. For example, the current model requires simpler 
mathematics when axisymmetrical bodies are considered. On the other hand 
we find the charge model more convenient in the analysis of complex 
polygonal shapes. Also the charge model is by tradition almost exclusively 
employed in a such well-developed field of research as  magnetic domain 
theory [11-13]. 

Juxtaposing the two models provides a very instructive insight into 
the problem of external and internal field of magnetized bodies. To illustrate 
this important matter in Fig. 8 we present the field distribution for a cubic 
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sample (magnetized along the Z-direction) as obtained by two methods 
[Eqs. (20) and (24)].  

The external field is exactly the same for both presentations, whereas 
inside the sample only Bx field components coincide with each other. As to 
the Bz components they differ inside the sample exactly by the value of μ0M, 
in full accordance with basic relation (2). In other words, the current model 
gives the B value everywhere, while it is the subsidiary vector quantity μ0H 
that is given by the charge model [14]. At the same time Bx and By remain 
the same for both approaches because for this particular case 
μ0Mx = μ0My = 0. This arguments explain why the formulas for Bx and By 
are the same when different models are applied to tetragonal prisms. In 
contrast, similar pair of formulas (12) and (14) (cylinders) are of markedly 
different appearance. We were not able to bring them into the same form 
analytically. However, the numerical check confirmed their full consistency 
with the above deduction within the error of integration. 
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F i g .  8. Magnetic induction BBz and field intensity μ0Hz in the 
central XZ plane for a 10×10×10 mm Z-magnetized cube as 
calculated by equivalent current (upper graph) and charge 
(lower graph) formalisms. The values are the same outside the 
body and differ exactly by μ0Mz=BrB =0.8 T (Mx=My=0) inside 
it. Dashed surface in the inset indicates the observation plane 

The inside μ0H derived by any model (to obtain μ0H inside the 
sample by the current model just subtract μ0M from B) is in fact the so-called 
self-demagnetizing field. It is worthwhile to recall that in non-ellipsodal 
bodies the demagnetizing field is not uniform [15]. This fact is generally 
accounted for by introducing a ballistic (averaged over the central cross-
section) and magnetometric (averaged over the whole sample volume) 
demagnetizing factors [26]. These may be computed provided μ0 H is 
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characterized locally inside the sample. In this way we were able to 
reproduce exactly the known tables of demagnetizing factors for cylinders 
and rectangular prisms derived otherwise in a more complex fashion. 
Evidently other magnet shapes may be characterized in the same way. 

Still another application of the results presented is connected to the 
calculation of both external and internal fields arising from magnetic 
domains. To this end we may think of a magnetic domain as a permanent 
magnet. This is justified because generally the domain wall thickness is small 
compared to the domain size. With this provision the above derivations may 
be directly applied to a variety of magnetic domain structures. An illustration 
of this approach to the analysis of some typical domain structures is given in 
F i g . 9. 

±σ=±μoM Im=M 

 

(a) 

(b) 

Im2=-2Im ±σ1=-2σ Δσ 
(c) 

F i g .  9. Presentation of some typical domain structures (DS) by 
Amperian currents and magnetic charges. (a) Kittel-type stripe 180o 

DS, (b) cylindrical (bubble) DS, (c) closed 90o DS in a crystal having 
cubic anisotropy 

 

The final remark completing the discussion is that the results given 
also may be applied to the calculation of permanent magnet systems 
including magnetically soft elements, e.g. back iron. In doing so the method 
of images well known in electrostatics [3] may be succesfully exploited 
assuming infinite magnetic permeability of the backing elements. With this 
provision the problem reduces to that of summing up the contribution of a 
series of regularly positioned images of the main magnet by the same 
formula. The sum of the first n terms of such a series differs numerically 
from the total sum by less than the absolute value of the (n+1)-th term. 
Usually n of the order of 5-10 is sufficient to obtain adequate accuracy in 
good accordance with experiment. 
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In conclusion, we have demonstrated that straightforward calculations 
of a variety of permanent magnet configurations is feasible from the first 
principles given by the fundamental laws supported by simple numerical 
techniques. The calculational details presented have not previuosly been 
available in a single paper.  

The results of this study may be used either at the introductory 
courses in electromagnetism or at advanced level of training, appealing to 
students who, while lacking experience in more sophisticated aspects of 
magnetic field calculations, find the more elementary approach 
unsatisfactory. 
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Appendix 
For ready reference the above derived general formulas are written 

below for particular cases of the BBz field component on the magnet Z-axis, as 
a function of coordinate z0 , when the solutions are greatly simplified. 

 
Circular turn of radius  a: 
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Axially magnetized cylinder of height 2h: 
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Axially magnetized ring: 
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where a1  = inner, a2 = outer ring radius. 
 

Flat spiral solenoid: 
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where N = number of turns. 

Radially magnetized ring: 
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where - and + signs  apply to subscripts 1 and 2, respectively. 

Rectangular current turn 2a × 2b: 
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Rectangular charged sheet 2a × 2b: 
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Tetragonal prism 2a × 2b × 2h: 
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Part of these formulas may be found in standard texbooks on 
electromagnetism. However, here they arrive from the simplification of 
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corresponding general equations rather than from direct elementary 
derivation. 
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