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In this paper, we prove the first-order convergence law for the uniform
attachment random graph with almost all vertices having the same degree.
In the considered model, vertices and edges are introduced recursively: at
time m+ 1, we start with a complete graph on m+ 1 vertices. At step n+1,
vertex n+1 is introduced together with m edges joining the new vertex with
m vertices chosen uniformly from those vertices of 1,...,n, whose degree
is less than d = 2m. To prove the law, we describe the dynamics of the
logical equivalence classes of the random graph using Markov chains. The
convergence law follows from the existence of a limiting distribution of the
considered Markov chain.
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Introduction

In the present paper, we prove the first-order (FO for brevity) convergence law for
uniform attachment random graphs with most vertices having a given degree using
finite Markov chains.

FO sentences about graphs could include the following symbols: variables x, y, z1, . . .
(which represent vertices), logical connectives A,V,—, =, <, two relational symbols
(between variables) ~ (adjacency) and = (equality), brackets and quantifiers 3,V (see
the formal definition in, e.g., [4]). The sequence G, of random graphs obeys the FO
convergence law if, for every FO sentence ¢, Pr(G,, = ¢) converges as n — oo. If the
limit is either 0 or 1 for any formula, G,, obeys the zero-one law. If G, obeys the
zero-one law, it is trivial in terms of the FO logic in the sense that all properties are
trivial on a typical large enough graph.

The FO logical laws usually proven using Ehrenfeucht-Fraissé pebble game (see,
e.g., [4, Chapter 11.2]). The connection between FO logic and the Ehrenfeucht-Fraissé
game is described in the following result.
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Theorem 1. Duplicator wins the y-pebble game on G and H in R rounds if and only
if, for every FO sentence @ with at most v variables and quantifier depth at most R,
either o is true on both G and H or it is false on both graphs.

In particular, if for any € > 0 one could define a finite number of classes Ay,
k =1,..., K, of graphs such that Duplicator wins the pebble game on graphs of the
same class and Pr(G,, € A;) — pg for all k =1,..., K with Zszl pr > 1—¢, then G,
obeys the FO convergence law.

Logic limit laws were studied on many different models, such as the binomial random
graph ( [9,10]), random regular graphs ( [2]), attachment models ( [5,6, 8]), etc. (
[3,11,12]). In the present article, we are interested in recursive random graph models.
One of the main arguments towards G,, not satisfying the zero-one law for such models
is the existence of rare subgraphs, which appear with diminishing probability (and
with high probability does not appear after some moment, see, e.g., [5]). In this case,
even if G,, obeys the FO convergence law and not the zero-one law, it still could be
asymptotically trivial in terms of some classes of sentences of the FO logic in a sense
that the correctness of the property on a graph does not change after some moment
(see, e.g., [6,8]). In such a case, the division on the classes Ax, k =1, ..., K, is based on
subgraph of G,, on first N vertices for all n > N (N depends on €). The more difficult
case is when the correctness of the property changes infinitely many times during the
(graph) process. Such behavior is somewhat similar to the behavior of a Markov chain,
which changes its state infinitely many times but still could have a limiting probability
distribution. One of the main purposes of the present paper is to showcase such a
connection between a graph obeying the FO convergence law and the existence of the
limiting probability distribution for related Markov chains (in our case, such a chain
would be finite).

Let us give a formal description of our model. Fix m € N, m > 1, and let d = 2m.
We start with a complete graph G,,,+1 on m + 1 vertices. Then, on each step, we add
a new vertex and draw m edges from it to different vertices chosen uniformly among
vertices with a degree less than d. Note that the total degree (the sum of degrees of all
vertices) of the graph G,, would be equal to m(m — 1)+ 2m(n —m) = dn —m(m + 1).
In particular, the number of vertices of degree d in G,, is between n — m(m + 1) and
n—(m+1). Hence, it is always possible to draw m edges from a new vertex to different
vertices (of a degree less than d). The model for d > 2m was considered in [7], where
a similar result was proven using Markov chains with infinitely many states, as well as
the stochastic approximation technique.

The resulting graph is somewhat similar to a d-regular graph (i.e., for a graph with
all vertices having degree d, the number of vertices or the degrees should be even for
such a graph to exist). Note that regular graphs cannot be dynamic since drawing
edges to vertices of a regular graph makes it non-regular. Hence, regular graphs are
built separately for each n (where n is the number of vertices). Our model provides a
way of building a graph with properties close to a regular graph through the dynamic
procedure.

Let us formulate our main result.

Theorem 2. G, obeys the FO convergence law.
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1. Configuration of open vertices

For the graph G,,, consider its subgraph T;,, obtained in the following way. First,
consider the subgraph of G, on vertices that have degrees less than d, and, for each
vertex, add to it the number of leaves equal to the difference between vertex degree in
G, and such a subgraph. Note that the set of all possible subgraphs obtained in such
a way is finite. Also, T,,+1 depends only on T}, and does not depend on n. As a result,
T,, n € N form a Markov chain with a finite number of states (which corresponds to
different types of subgraphs T;,).

Define U%(n) as a-neighborhood of vertices of T, (i.e., the subgraph of G, on
vertices that are at distances at most a from T},). There is a finite number of possible
neighborhoods. Since transition between U®(n) and U®*(n + 1) depends only on the
state of U%*(n), U%(n) forms a finite Markov chain.

We need the following result about the existence of a limit distribution of a
finite Markov chain (see, e.g., [1, Chapter 6] for more details on Markov chains and
corresponding terminology).

Lemma 1. Let A,, n € N be a finite Markov chain. If there exists k € N, and a
state So such that Sy could be achieved from any state (including S itself) in precisely
k steps, and any state could be achieved from Sy, then, for any state S, there is a
constant cg > 0, such that

Pr(A,=5)—cs asn— oo. (1)

Proof. Due to the existence of state Sy, the chain is irreducible (any state could be
achieved from any state through Sp) and aperiodic (Sp could be achieved from any
state in both k and k 4 1 step since we could perform one random step). Since the
Markov chain is finite, due to [1, Lemma 6.3.5], all states are non-null persistent. As a
result, due to [1, Theorem 6.4.17], we get the statement of the lemma. O

We now prove the existence of a state that could be achieved from any state in the
same number of steps for T, and U*(n).

Lemma 2. A state that consists of m + 1 isolated vertices with m leaves is achievable
from any state in precisely m + 1 steps (we would call such a state a forest state).

Proof. Since the total degree of G,, equals 2mn —m(m + 1), it would take m + 1 steps
of drawing m edges to G, from new vertices to make all vertices of G,, to have degrees
equal to d = 2m in Gpqmy1. Let us consider the following procedure. At each step,
we would choose m vertices among vertices of G, with the smallest degrees and draw
edges to them. Let us prove by induction that this procedure gives us the desired result.
Since the lowest degree in G, is at least m, there are at least m — 1 vertices in G,, that
we could draw an edge into, so the first step is possible, and after it, the total degree
of (vertices of) G,, (in G,41) equals 2mn — m?.

Let us prove by induction that each follow-up step is possible. To do so, we need to
prove that in G414k, K = 0, ..., m—1, there are at least m vertices with degree less than
d, the lowest degree is at most d —m + k, and the total degree equals 2mn —m(m — k).
For k = 0, these conditions are satisfied. Assume they hold for k& and prove that after
the k-th step, they would be true for k + 1. Since the total degree of G, (in Gy14%)
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equals 2mn — m(m — k), and lowest degree is at least d — (m — k), there are at most
m vertices with degree d — (m — k) and at least m vertices with degree less than d,
so the step could be performed and the lowest degree of G,, in G, 4x42 would be at
least d — m + k + 1. Also, the total degree of G,, would increase by m and be equal to
2mn —m(m —k) +m = 2mn —m(m — (k+ 1)), and there would be at least m vertices
of degree less than d.

As a result, we would get m + 1 vertices of degree m that are connected only to
vertices of [n], which have degrees equal to d. O

For the chain U*(n), define the following state U§. Consider a+1 consequent groups
Aq, ..., Apy1 of m + 1 vertices, such that every vertex of A; connected with and only
with every vertices of A;_; and A;y1. Note that this state is achievable from any state
in precisely m(a + 1) steps by repeating the procedure described in Lemma 2 a + 1
times. Let U® be the set of all possible neighborhoods U®(n), achievable from the state
U§. Therefore, due to Lemma 1, we get the following result.

Lemma 3. For any graph H € U® there exists cy such that
Pr(U%n)=H) — cg

almost surely, and

Z CHZI.

Heu>

2. Subgraphs on old vertices

In this section, we study a-neighborhoods of vertices that contain only vertices of
degree d (in graphs G, for large enough n, once such a neighborhood is achieved on a
vertex, it does not change afterward). We would call such neighborhoods crystallized.
Note that only a finite number of such neighborhoods could be achieved. Moreover,
for each possible configuration of U%(n), the probabilities of obtaining any achievable
set of crystallized neighborhoods on vertices of T,, in bounded (by some constant C)
number of steps depends only on graph UZ(n) (and does not depend on n). Due to
Lemma 3 the probability for U%(n) to have a given configuration separated from 0 for
large enough n. Therefore, for a vertex n, the probability that its a-neighborhood at
time n + C would be crystallized and of a given achievable type is separated from 0.
Hence, we get the following result.

Lemma 4. For any k and any achievable from U type of crystallized a-neighborhood
with a high probability, there are at least k vertices with disjoint a-neighborhoods of that
type in G,,.
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3. Convergence law

Fix R € N. Let a = 3%. In this section, we provide division on classes Aj of
graphs and prove the existence of the winning strategy in R rounds for a pair of
graphs G, Gy, within the same class (for large enough ni,ns). We would consider a
division based on the type of the graph U%(n) and the type of graph on initial vertices.
The configuration on m + 1 initial vertices is not achievable again during the process.
Therefore, to ensure that the configuration of U?(n) is achievable (from Ug), we need
to make sure that the first m + 1 vertices do not belong to UZ(n). Since the number
of vertices with a degree less than d does not exceed m(m + 1), the probability of
increasing the degree of a given vertex is at least %ﬂ Hence, with high probability
a-neighborhoods (we denote their union as W%(n)) of the first m + 1 vertices in G,
contains only vertices of degree d. Indeed, for W%(n) to be crystallized, we need to
draw at most (m + 1)%! edges to the given vertices, so by large deviation estimates
for Bernoulli random variables (see, e.g., [1, Theorem 5.11.4]), such probability is at
least 1 — Ce™“" for some constants ¢, C' > 0. As a result, we get

Lemma 5. For any ng with high probability all degrees of vertices from [ng] have degree
din G,.

Fix € > 0. Let N be such that with probability at least 1 — ¢, degrees of all vertices
of W24(N) in G equal to d (the same would be then true for all n > N). There is a
finite number M of pairs of types of W2%(n) and U2(n). Let classes Ag, k=1,..., M,
be defined by pairs (W?2%(n),U2(n)), such that degrees of all vertices of W?2%(N) in
G equal to d. Let us define the following properties of graphs G, , Gr,-

Q1 G, and G,, belong to the same class Ay.

Q2 For any achievable (from U§) type of complete a-neighborhood of a vertex there
are at least R vertices with non-intersecting a-neighborhoods of that type in G,,
that does not intersect with W?2%(n) and UZ(n), n = ny,na.

Note that the probability that for all n > N graph G,, belongs to one of the classes Ay
is at least 1 —e.

Lemma 6. If graphs G, , G, satisfy properties Q1, Q2, then Duplicator has a winning
strategy on them.

Proof. Let us consider the following strategy. For a vertex v and r € N, let B,.(v) be its
neighborhood of radius r. Let Spoiler be putting pebbles z1,...,zz and duplicator
putting v, ...,yr. We omit a reference to a graph in the notation for these balls
— each time we use the notation, the host graph would be clear from the context.
We need to make a strategy such that, on each step, subgraphs of G,, and G,,
on pebbles are isomorphic. We will build the strategy by induction over . Let us
assume that Byor-j+1(x;) and Bar—j+1(y;) are the same (i.e., they isomorphic and keep
correspondence between pebbles) for j < i.

1. If d(w;, [m + 1]) < 287! then we put y; = z;. Note that their neighborhoods
belong to W%(n) and, hence, are the same.

2. If z; belongs to one of UﬁRﬂH (n), n = n1,ng, (without loss of generality assume

it is U,%fﬂ.ﬂ(nl)), it’s neighborhood belongs to Uy (n1). Since Uf (n1) and U, (n2)
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are the same, we could choose y; in Uf (n2) that corresponds to z; such that their
neighborhoods would be the same.

3. If ; does not belong to either one of W2" (n), U2R7H1 (n), n = ny, ng, our goal
is to choose y; in a way that its 2%~#*1 neighborhood would be exactly the same as of
x;. If there are pebbles in Byr—i+1(x;) (let j be the lowest index of such a pebble), then
Byr-it1(x;) belongs to Bor—j+1(x;) (or Bar-j+1(y;)), and, therefore, ; corresponds to
the vertex in Bor-j+1(y;) (or Bor—j+1(z;)), which we put as y;. Now consider the case
when there are no pebbles in Byr—it+1(x;). If it does not belong to the neighborhood
of one of the previous pebbles, there are at least R — i 4+ 1 vertices with the same a-
neighborhood (that does not interact with previously chosen vertices), and we choose
any of them as y;. If it belongs to the neighborhood of one of the previous pebbles,
then it belongs along with its neighborhood to a wider a-neighborhood of one of the
previous pebbles and, hence, corresponds to a vertex y; in the same a-neighborhood in
the other graph. O

As a result, if property Q2 holds for all large enough pairs ny,ns, then (due to
Theorem 1) for each FO sentence, it is either true or false on G,, (for large enough n)
depending only on the class A;, to which G,, belongs. Hence, Theorem 2 follows from

Lemma 7. For any R € N and any € > 0 there is N € N, and numbers p; > 0,
i€ [M], Zij\ilpi > 1 —¢, such that

— With probability at least 1 — € for all ny > ny > N the pair (G,,,Gp,) has the
property Q2;

— for every i € [M], lim,,_, Pr(G, € A;) = p;.

Proof. The first part follows from Lemma 4 and the fact that the number of crystallized
neighborhoods of the given type in G,, is non-decreasing over n.
The second part follows from Lemma 5 and Lemma 3. O

Conclusion

In the present paper we demonstrated how Markov chains could be used to prove
convergence laws about first-order logic on graphs. The model considered in the article
was relatively simple, so we were able to highlight main steps of the prove without
large amount of technical details. More general models would require infinite Markov
chains with more complex transition, which would be much harder to study, but general
structure of the prove should remain the same.
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JIOTUKA IIEPBOTO ITIOPAIKA HA TPA®AX PABHOMEPHOTI'O
ITPUCOEAVMHEHNS C SAJAHHOM CTEIIEHBIO BEPIIINTH

Mauasnukua FO.A.
TBepckoit Tocy/1apCTBEeHHBIN YHUBEPCUTET, T. '1Bephb
MocKoBCKuil (pUBNKO-TEXHUIECKNI WHCTUTYT, T. MoCKBa

Iocmynuaa 6 pedaxyuro 30.07.2024, nocae nepepabomiu 10.09.2024.

B crarbe 10Ka3bIBAETCS 3aKOH CXOIUMOCTH JIJIsl JIOTUKH TIEPBOTO HMOPSIJIKA
Ha CJIyYailHbIX rpadax ¢ paBHOMEPHBIM IIPUCOEINHEHUEM BEPIIWH, B KOTO-
PBIX [IOYTH BCE BEPIIUHBI IMEIOT OJMHAKOBYIO CTeleHb. B paccMarpuBaeMoii
MOJIEJIM BEPIIUHBL 1 Pedpa BBOISATCS PEKYPCUBHO: B MOMEHT BpeMeHu m + 1
MBI HA9MHAEM C 1oJIHOro rpada uva m+ 1 Bepmune. Ha mare n+ 1 gobasiis-
ercs Bepiuaa 1+ 1 BMecTe ¢ m pebpaMu, COeIUHSIONIMI HOBYIO BEPITHHY
¢ M BepIINHAMH, BEIODAHHBIMY PABHOBEPOSITHO U3 TeX BepinuH u3 1,...,n,
CTeleHb KOTOPBIX MeHbIle d = 2m. J[Jist JoKa3aTeIbCTBa 3aKOHA Mbl OIKMCHI-
BaeM J[MHAMUKY KJIACCOB JIOTMIECKOU 9KBUBAJIEHTHOCTH CJLydaiiHOro rpada
¢ moMoInpIo nereit MapkoBa. 3aKOH CXOIUMOCTH CJIEAYET U3 CYIIEeCTBOBAHUS
MIPEJIeJIbHOTO PACIIPEIeSIeHIsT paccMaTpuBaeMoii rienn MapkoBa.

KuroueBbie coBa: paBHOMEPHOE [IPUCOEINHEHNE, JIOTUKA IIEPBOTO ITOPS/I-
Ka, 3aKOHbI cxoauMocTu, MapKoBcKue 1emnmu.
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