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In this paper, we prove the first-order convergence law for the uniform
attachment random graph with almost all vertices having the same degree.
In the considered model, vertices and edges are introduced recursively: at
time 𝑚+1, we start with a complete graph on 𝑚+1 vertices. At step 𝑛+1,
vertex 𝑛+1 is introduced together with 𝑚 edges joining the new vertex with
𝑚 vertices chosen uniformly from those vertices of 1, . . . , 𝑛, whose degree
is less than 𝑑 = 2𝑚. To prove the law, we describe the dynamics of the
logical equivalence classes of the random graph using Markov chains. The
convergence law follows from the existence of a limiting distribution of the
considered Markov chain.
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Introduction

In the present paper, we prove the first-order (FO for brevity) convergence law for
uniform attachment random graphs with most vertices having a given degree using
finite Markov chains.

FO sentences about graphs could include the following symbols: variables 𝑥, 𝑦, 𝑥1, . . .
(which represent vertices), logical connectives ∧,∨,¬,⇒,⇔, two relational symbols
(between variables) ∼ (adjacency) and = (equality), brackets and quantifiers ∃,∀ (see
the formal definition in, e.g., [4]). The sequence 𝐺𝑛 of random graphs obeys the FO
convergence law if, for every FO sentence 𝜙, Pr(𝒢𝑛 |= 𝜙) converges as 𝑛 → ∞. If the
limit is either 0 or 1 for any formula, 𝐺𝑛 obeys the zero-one law. If 𝐺𝑛 obeys the
zero-one law, it is trivial in terms of the FO logic in the sense that all properties are
trivial on a typical large enough graph.

The FO logical laws usually proven using Ehrenfeucht-Fräıssé pebble game (see,
e.g., [4, Chapter 11.2]). The connection between FO logic and the Ehrenfeucht-Fräıssé
game is described in the following result.
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Theorem 1. Duplicator wins the 𝛾-pebble game on 𝐺 and 𝐻 in 𝑅 rounds if and only
if, for every FO sentence 𝜙 with at most 𝛾 variables and quantifier depth at most 𝑅,
either 𝜙 is true on both 𝐺 and 𝐻 or it is false on both graphs.

In particular, if for any 𝜖 > 0 one could define a finite number of classes 𝒜𝑘,
𝑘 = 1, ...,𝐾, of graphs such that Duplicator wins the pebble game on graphs of the
same class and Pr(𝐺𝑛 ∈ 𝒜𝑘) → 𝑝𝑘 for all 𝑘 = 1, ...,𝐾 with

∑︀𝐾
𝑘=1 𝑝𝑘 > 1− 𝜖, then 𝐺𝑛

obeys the FO convergence law.
Logic limit laws were studied on many different models, such as the binomial random

graph ( [9, 10]), random regular graphs ( [2]), attachment models ( [5, 6, 8]), etc. (
[3, 11,12]). In the present article, we are interested in recursive random graph models.
One of the main arguments towards 𝐺𝑛 not satisfying the zero-one law for such models
is the existence of rare subgraphs, which appear with diminishing probability (and
with high probability does not appear after some moment, see, e.g., [5]). In this case,
even if 𝐺𝑛 obeys the FO convergence law and not the zero-one law, it still could be
asymptotically trivial in terms of some classes of sentences of the FO logic in a sense
that the correctness of the property on a graph does not change after some moment
(see, e.g., [6,8]). In such a case, the division on the classes 𝒜𝑘, 𝑘 = 1, ...,𝐾, is based on
subgraph of 𝐺𝑛 on first 𝑁 vertices for all 𝑛 > 𝑁 (𝑁 depends on 𝜖). The more difficult
case is when the correctness of the property changes infinitely many times during the
(graph) process. Such behavior is somewhat similar to the behavior of a Markov chain,
which changes its state infinitely many times but still could have a limiting probability
distribution. One of the main purposes of the present paper is to showcase such a
connection between a graph obeying the FO convergence law and the existence of the
limiting probability distribution for related Markov chains (in our case, such a chain
would be finite).

Let us give a formal description of our model. Fix 𝑚 ∈ N, 𝑚 > 1, and let 𝑑 = 2𝑚.
We start with a complete graph 𝐺𝑚+1 on 𝑚+ 1 vertices. Then, on each step, we add
a new vertex and draw 𝑚 edges from it to different vertices chosen uniformly among
vertices with a degree less than 𝑑. Note that the total degree (the sum of degrees of all
vertices) of the graph 𝐺𝑛 would be equal to 𝑚(𝑚− 1) + 2𝑚(𝑛−𝑚) = 𝑑𝑛−𝑚(𝑚+1).
In particular, the number of vertices of degree 𝑑 in 𝐺𝑛 is between 𝑛 −𝑚(𝑚 + 1) and
𝑛− (𝑚+1). Hence, it is always possible to draw 𝑚 edges from a new vertex to different
vertices (of a degree less than 𝑑). The model for 𝑑 > 2𝑚 was considered in [7], where
a similar result was proven using Markov chains with infinitely many states, as well as
the stochastic approximation technique.

The resulting graph is somewhat similar to a 𝑑-regular graph (i.e., for a graph with
all vertices having degree 𝑑, the number of vertices or the degrees should be even for
such a graph to exist). Note that regular graphs cannot be dynamic since drawing
edges to vertices of a regular graph makes it non-regular. Hence, regular graphs are
built separately for each 𝑛 (where 𝑛 is the number of vertices). Our model provides a
way of building a graph with properties close to a regular graph through the dynamic
procedure.

Let us formulate our main result.

Theorem 2. 𝐺𝑛 obeys the FO convergence law.
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1. Configuration of open vertices

For the graph 𝐺𝑛, consider its subgraph 𝑇𝑛, obtained in the following way. First,
consider the subgraph of 𝐺𝑛 on vertices that have degrees less than 𝑑, and, for each
vertex, add to it the number of leaves equal to the difference between vertex degree in
𝐺𝑛 and such a subgraph. Note that the set of all possible subgraphs obtained in such
a way is finite. Also, 𝑇𝑛+1 depends only on 𝑇𝑛 and does not depend on 𝑛. As a result,
𝑇𝑛, 𝑛 ∈ N form a Markov chain with a finite number of states (which corresponds to
different types of subgraphs 𝑇𝑛).

Define 𝑈𝑎(𝑛) as 𝑎-neighborhood of vertices of 𝑇𝑛 (i.e., the subgraph of 𝐺𝑛 on
vertices that are at distances at most 𝑎 from 𝑇𝑛). There is a finite number of possible
neighborhoods. Since transition between 𝑈𝑎(𝑛) and 𝑈𝑎(𝑛 + 1) depends only on the
state of 𝑈𝑎(𝑛), 𝑈𝑎(𝑛) forms a finite Markov chain.

We need the following result about the existence of a limit distribution of a
finite Markov chain (see, e.g., [1, Chapter 6] for more details on Markov chains and
corresponding terminology).

Lemma 1. Let 𝐴𝑛, 𝑛 ∈ N be a finite Markov chain. If there exists 𝑘 ∈ N, and a
state 𝑆0 such that 𝑆0 could be achieved from any state (including 𝑆 itself) in precisely
𝑘 steps, and any state could be achieved from 𝑆0, then, for any state 𝑆, there is a
constant 𝑐𝑆 > 0, such that

Pr (𝐴𝑛 = 𝑆) → 𝑐𝑆 as 𝑛 → ∞. (1)

Proof. Due to the existence of state 𝑆0, the chain is irreducible (any state could be
achieved from any state through 𝑆0) and aperiodic (𝑆0 could be achieved from any
state in both 𝑘 and 𝑘 + 1 step since we could perform one random step). Since the
Markov chain is finite, due to [1, Lemma 6.3.5], all states are non-null persistent. As a
result, due to [1, Theorem 6.4.17], we get the statement of the lemma.

We now prove the existence of a state that could be achieved from any state in the
same number of steps for 𝑇𝑛 and 𝑈𝑎(𝑛).

Lemma 2. A state that consists of 𝑚+ 1 isolated vertices with 𝑚 leaves is achievable
from any state in precisely 𝑚+ 1 steps (we would call such a state a forest state).

Proof. Since the total degree of 𝐺𝑛 equals 2𝑚𝑛−𝑚(𝑚+1), it would take 𝑚+1 steps
of drawing 𝑚 edges to 𝐺𝑛 from new vertices to make all vertices of 𝐺𝑛 to have degrees
equal to 𝑑 = 2𝑚 in 𝐺𝑛+𝑚+1. Let us consider the following procedure. At each step,
we would choose 𝑚 vertices among vertices of 𝐺𝑛 with the smallest degrees and draw
edges to them. Let us prove by induction that this procedure gives us the desired result.
Since the lowest degree in 𝐺𝑛 is at least 𝑚, there are at least 𝑚− 1 vertices in 𝐺𝑛 that
we could draw an edge into, so the first step is possible, and after it, the total degree
of (vertices of) 𝐺𝑛 (in 𝐺𝑛+1) equals 2𝑚𝑛−𝑚2.

Let us prove by induction that each follow-up step is possible. To do so, we need to
prove that in 𝐺𝑛+1+𝑘, 𝑘 = 0, ...,𝑚−1, there are at least 𝑚 vertices with degree less than
𝑑, the lowest degree is at most 𝑑−𝑚+𝑘, and the total degree equals 2𝑚𝑛−𝑚(𝑚−𝑘).
For 𝑘 = 0, these conditions are satisfied. Assume they hold for 𝑘 and prove that after
the 𝑘-th step, they would be true for 𝑘 + 1. Since the total degree of 𝐺𝑛 (in 𝐺𝑛+1+𝑘)
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equals 2𝑚𝑛 −𝑚(𝑚 − 𝑘), and lowest degree is at least 𝑑 − (𝑚 − 𝑘), there are at most
𝑚 vertices with degree 𝑑 − (𝑚 − 𝑘) and at least 𝑚 vertices with degree less than 𝑑,
so the step could be performed and the lowest degree of 𝐺𝑛 in 𝐺𝑛+𝑘+2 would be at
least 𝑑−𝑚+ 𝑘 + 1. Also, the total degree of 𝐺𝑛 would increase by 𝑚 and be equal to
2𝑚𝑛−𝑚(𝑚− 𝑘)+𝑚 = 2𝑚𝑛−𝑚(𝑚− (𝑘+1)), and there would be at least 𝑚 vertices
of degree less than 𝑑.

As a result, we would get 𝑚 + 1 vertices of degree 𝑚 that are connected only to
vertices of [𝑛], which have degrees equal to 𝑑.

For the chain 𝑈𝑎(𝑛), define the following state 𝑈𝑎
0 . Consider 𝑎+1 consequent groups

𝐴1, ..., 𝐴𝑚+1 of 𝑚 + 1 vertices, such that every vertex of 𝐴𝑖 connected with and only
with every vertices of 𝐴𝑖−1 and 𝐴𝑖+1. Note that this state is achievable from any state
in precisely 𝑚(𝑎 + 1) steps by repeating the procedure described in Lemma 2 𝑎 + 1
times. Let 𝒰𝑎 be the set of all possible neighborhoods 𝑈𝑎(𝑛), achievable from the state
𝑈𝑎
0 . Therefore, due to Lemma 1, we get the following result.

Lemma 3. For any graph 𝐻 ∈ 𝒰𝑎 there exists 𝑐𝐻 such that

Pr (𝑈𝑎(𝑛) = 𝐻) → 𝑐𝐻

almost surely, and ∑︁
𝐻∈𝒰𝑎

𝑐𝐻 = 1.

2. Subgraphs on old vertices

In this section, we study 𝑎-neighborhoods of vertices that contain only vertices of
degree 𝑑 (in graphs 𝐺𝑛, for large enough 𝑛, once such a neighborhood is achieved on a
vertex, it does not change afterward). We would call such neighborhoods crystallized.
Note that only a finite number of such neighborhoods could be achieved. Moreover,
for each possible configuration of 𝑈𝑎

𝑛(𝑛), the probabilities of obtaining any achievable
set of crystallized neighborhoods on vertices of 𝑇𝑛 in bounded (by some constant 𝐶)
number of steps depends only on graph 𝑈𝑎

𝑛(𝑛) (and does not depend on 𝑛). Due to
Lemma 3 the probability for 𝑈𝑎

𝑛(𝑛) to have a given configuration separated from 0 for
large enough 𝑛. Therefore, for a vertex 𝑛, the probability that its 𝑎-neighborhood at
time 𝑛 + 𝐶 would be crystallized and of a given achievable type is separated from 0.
Hence, we get the following result.

Lemma 4. For any 𝑘 and any achievable from 𝑈𝑎
0 type of crystallized 𝑎-neighborhood

with a high probability, there are at least 𝑘 vertices with disjoint 𝑎-neighborhoods of that
type in 𝐺𝑛.
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3. Convergence law

Fix 𝑅 ∈ N. Let 𝑎 = 3𝑅. In this section, we provide division on classes 𝒜𝑘 of
graphs and prove the existence of the winning strategy in 𝑅 rounds for a pair of
graphs 𝐺𝑛1

, 𝐺𝑛2
within the same class (for large enough 𝑛1, 𝑛2). We would consider a

division based on the type of the graph 𝑈𝑎
𝑛(𝑛) and the type of graph on initial vertices.

The configuration on 𝑚+ 1 initial vertices is not achievable again during the process.
Therefore, to ensure that the configuration of 𝑈𝑎

𝑛(𝑛) is achievable (from 𝑈𝑎
0 ), we need

to make sure that the first 𝑚 + 1 vertices do not belong to 𝑈𝑎
𝑛(𝑛). Since the number

of vertices with a degree less than 𝑑 does not exceed 𝑚(𝑚 + 1), the probability of
increasing the degree of a given vertex is at least 1

𝑚+1 . Hence, with high probability
𝑎-neighborhoods (we denote their union as 𝑊 𝑎(𝑛)) of the first 𝑚 + 1 vertices in 𝐺𝑛

contains only vertices of degree 𝑑. Indeed, for 𝑊 𝑎(𝑛) to be crystallized, we need to
draw at most (𝑚 + 1)𝑑+1 edges to the given vertices, so by large deviation estimates
for Bernoulli random variables (see, e.g., [1, Theorem 5.11.4]), such probability is at
least 1− 𝐶𝑒−𝑐𝑛 for some constants 𝑐, 𝐶 > 0. As a result, we get

Lemma 5. For any 𝑛0 with high probability all degrees of vertices from [𝑛0] have degree
𝑑 in 𝐺𝑛.

Fix 𝜖 > 0. Let 𝑁 be such that with probability at least 1− 𝜖, degrees of all vertices
of 𝑊 2𝑎(𝑁) in 𝐺𝑁 equal to 𝑑 (the same would be then true for all 𝑛 ≥ 𝑁). There is a
finite number 𝑀 of pairs of types of 𝑊 2𝑎(𝑛) and 𝑈𝑎

𝑛(𝑛). Let classes 𝒜𝑘, 𝑘 = 1, . . . ,𝑀,
be defined by pairs (𝑊 2𝑎(𝑛), 𝑈𝑎

𝑛(𝑛)), such that degrees of all vertices of 𝑊 2𝑎(𝑁) in
𝐺𝑁 equal to 𝑑. Let us define the following properties of graphs 𝐺𝑛1

, 𝐺𝑛2
.

Q1 𝐺𝑛1
and 𝐺𝑛2

belong to the same class 𝒜𝑘.

Q2 For any achievable (from 𝑈𝑎
0 ) type of complete 𝑎-neighborhood of a vertex there

are at least 𝑅 vertices with non-intersecting 𝑎-neighborhoods of that type in 𝐺𝑛

that does not intersect with 𝑊 2𝑎(𝑛) and 𝑈𝑎
𝑛(𝑛), 𝑛 = 𝑛1, 𝑛2.

Note that the probability that for all 𝑛 > 𝑁 graph 𝐺𝑛 belongs to one of the classes 𝒜𝑘

is at least 1− 𝜖.

Lemma 6. If graphs 𝐺𝑛1 , 𝐺𝑛2 satisfy properties 𝑄1, 𝑄2, then Duplicator has a winning
strategy on them.

Proof. Let us consider the following strategy. For a vertex 𝑣 and 𝑟 ∈ N, let 𝐵𝑟(𝑣) be its
neighborhood of radius 𝑟. Let Spoiler be putting pebbles 𝑥1, ..., 𝑥𝑅 and duplicator
putting 𝑦1, ..., 𝑦𝑅. We omit a reference to a graph in the notation for these balls
– each time we use the notation, the host graph would be clear from the context.
We need to make a strategy such that, on each step, subgraphs of 𝐺𝑛1

and 𝐺𝑛2

on pebbles are isomorphic. We will build the strategy by induction over 𝑖. Let us
assume that 𝐵2𝑅−𝑗+1(𝑥𝑗) and 𝐵2𝑅−𝑗+1(𝑦𝑗) are the same (i.e., they isomorphic and keep
correspondence between pebbles) for 𝑗 < 𝑖.

1. If 𝑑(𝑥𝑖, [𝑚 + 1]) < 2𝑅−𝑖+1 then we put 𝑦𝑖 = 𝑥𝑖. Note that their neighborhoods
belong to 𝑊 𝑎(𝑛) and, hence, are the same.

2. If 𝑥𝑖 belongs to one of 𝑈2𝑅−𝑖+1

𝑛 (𝑛), 𝑛 = 𝑛1, 𝑛2, (without loss of generality assume
it is 𝑈2𝑅−𝑖+1

𝑛1
(𝑛1)), it’s neighborhood belongs to 𝑈𝑎

𝑛1
(𝑛1). Since 𝑈𝑎

𝑛1
(𝑛1) and 𝑈𝑎

𝑛2
(𝑛2)
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are the same, we could choose 𝑦𝑖 in 𝑈𝑎
𝑛2
(𝑛2) that corresponds to 𝑥𝑖 such that their

neighborhoods would be the same.
3. If 𝑥𝑖 does not belong to either one of 𝑊 2𝑅−𝑖+1

(𝑛), 𝑈2𝑅−𝑖+1

𝑛 (𝑛), 𝑛 = 𝑛1, 𝑛2, our goal
is to choose 𝑦𝑖 in a way that its 2𝑅−𝑖+1 neighborhood would be exactly the same as of
𝑥𝑖. If there are pebbles in 𝐵2𝑅−𝑖+1(𝑥𝑖) (let 𝑗 be the lowest index of such a pebble), then
𝐵2𝑅−𝑖+1(𝑥𝑖) belongs to 𝐵2𝑅−𝑗+1(𝑥𝑗) (or 𝐵2𝑅−𝑗+1(𝑦𝑗)), and, therefore, 𝑥𝑖 corresponds to
the vertex in 𝐵2𝑅−𝑗+1(𝑦𝑗) (or 𝐵2𝑅−𝑗+1(𝑥𝑗)), which we put as 𝑦𝑖. Now consider the case
when there are no pebbles in 𝐵2𝑅−𝑖+1(𝑥𝑖). If it does not belong to the neighborhood
of one of the previous pebbles, there are at least 𝑅 − 𝑖 + 1 vertices with the same 𝑎-
neighborhood (that does not interact with previously chosen vertices), and we choose
any of them as 𝑦𝑖. If it belongs to the neighborhood of one of the previous pebbles,
then it belongs along with its neighborhood to a wider 𝑎-neighborhood of one of the
previous pebbles and, hence, corresponds to a vertex 𝑦𝑖 in the same 𝑎-neighborhood in
the other graph.

As a result, if property Q2 holds for all large enough pairs 𝑛1, 𝑛2, then (due to
Theorem 1) for each FO sentence, it is either true or false on 𝐺𝑛 (for large enough 𝑛)
depending only on the class 𝒜𝑖, to which 𝐺𝑛 belongs. Hence, Theorem 2 follows from

Lemma 7. For any 𝑅 ∈ N and any 𝜖 > 0 there is 𝑁 ∈ N, and numbers 𝑝𝑖 > 0,
𝑖 ∈ [𝑀 ],

∑︀𝑀
𝑖=1 𝑝𝑖 ≥ 1− 𝜖, such that

– With probability at least 1 − 𝜖 for all 𝑛1 > 𝑛2 > 𝑁 the pair (𝐺𝑛1
, 𝐺𝑛2

) has the
property Q2;

– for every 𝑖 ∈ [𝑀 ], lim𝑛→∞ Pr(𝐺𝑛 ∈ 𝒜𝑖) = 𝑝𝑖.

Proof. The first part follows from Lemma 4 and the fact that the number of crystallized
neighborhoods of the given type in 𝐺𝑛 is non-decreasing over 𝑛.

The second part follows from Lemma 5 and Lemma 3.

Conclusion

In the present paper we demonstrated how Markov chains could be used to prove
convergence laws about first-order logic on graphs. The model considered in the article
was relatively simple, so we were able to highlight main steps of the prove without
large amount of technical details. More general models would require infinite Markov
chains with more complex transition, which would be much harder to study, but general
structure of the prove should remain the same.
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ЛОГИКА ПЕРВОГО ПОРЯДКА НА ГРАФАХ РАВНОМЕРНОГО
ПРИСОЕДИНЕНИЯ С ЗАДАННОЙ СТЕПЕНЬЮ ВЕРШИН

Малышкин Ю.А.
Тверской государственный университет, г. Тверь

Московский физико-технический институт, г. Москва
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В статье доказывается закон сходимости для логики первого порядка
на случайных графах с равномерным присоединением вершин, в кото-
рых почти все вершины имеют одинаковую степень. В рассматриваемой
модели вершины и ребра вводятся рекурсивно: в момент времени 𝑚+1
мы начинаем с полного графа на 𝑚+1 вершине. На шаге 𝑛+1 добавля-
ется вершина 𝑛+1 вместе с 𝑚 ребрами, соединяющими новую вершину
с 𝑚 вершинами, выбранными равновероятно из тех вершин из 1, . . . , 𝑛,
степень которых меньше 𝑑 = 2𝑚. Для доказательства закона мы описы-
ваем динамику классов логической эквивалентности случайного графа
с помощью цепей Маркова. Закон сходимости следует из существования
предельного распределения рассматриваемой цепи Маркова.

Ключевые слова: равномерное присоединение, логика первого поряд-
ка, законы сходимости, Марковские цепи.
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