УДК 537.226.4

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ПЬЕЗОКЕРАМИЧЕСКИХ МЕХАНОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ДЛЯ ГЕНЕРАЦИИ ЭЛЕКТРИЧЕСТВА

В. А. Головнин¹, Е. С. Горнев¹, А. В. Дайнеко¹, Д. А. Добрынин¹, Д. В. Друина², Н. О. Мамкина²

¹ Научно-исследовательский институт «ЭЛПА», Зеленоград ² Тверской государственный университет *кафедра прикладной физики*

Рассмотрен баланс энергии пьезокерамических механоэлектрических преобразователей (МЭП) в режиме генерации электрической энергии. Проведена сравнительная оценка возможностей пьезоэффекта в пьезокерамике системы цирконата-титаната свинца (ЦТС) для генерации электричества при деформациях сжатия-растяжения и изгиба. Рассмотрены примеры применения пьезокерамических МЭП для преобразования рассеянной механической энергии движущегося транспорта в электрическую.

Ключевые слова: пьезокерамические механоэлектрические преобразователи, пьезоэффект, ЦТС

1. Введение. Поиск и изучение альтернативных источников энергии являются одним из популярных направлений научных исследований и практических разработок. К устройствам сбора микроэнергии, способным добывать энергию из окружающей среды, которые являются альтернативой микроваттных батарей, относятся механоэлектрические преобразователи (далее МЭП) на основе прямого пьезоэффекта в пьезоэлектриках [1-8]. Ежегодный мировой рост производства пьезокерамических микрогенераторов составляет ~ 40% [1] благодаря инновационному использованию пьезокерамических МЭП для производства электричества из энергии механических колебаний средств передвижения, в устройствах мониторинга трубопроводов, зданий и сооружений и др.

В настоящей работе рассмотрен баланс энергии МЭП в режиме генерации электрической энергии; проведена сравнительная оценка возможностей МЭП на пьезокерамике системы ЦТС для генерации электричества при деформациях сжатия-растяжения и изгиба; рассмотрен примеры применения пьезокерамических МЭП для реализации автономных источников питания.

2. Баланс энергии механоэлектрических преобразователей. Для МЭП энергия W_{OE} представляется в виде произведения обобщенной силы $F_{ob}(t)$ на обобщенную координату $h_{ob}(t)$:

$$W_{OE} = F_{OE}(t) \cdot h_{OE}(t), \qquad (1)$$

а поток энергии \dot{W}_{OE} , как производную от энергии по времени, можно представить как произведение обобщенной силы на обобщенную скорость $V_{OE}(t)$

$$\dot{W}_{O5} = F_{O5}(t) \cdot V_{O5}(t) \,. \tag{2}$$

Воздействия силы (периодические, единичные кратковременные и случайные) во времени можно представить в виде гармонических функций с помощью интеграла Фурье:

$$F_{OE}(t) = \frac{1}{2\pi} \sum_{-\infty}^{\infty} F_n(\omega) e^{-j\omega t} d\omega,$$

где $F_n(\omega) = \int_{-\infty}^{\infty} F(t) \cdot e^{j\omega t} d(t)$ – спектральная плотность воздействия;

 $F(\omega) \cdot d(\omega)$ представляет собой комплексную амплитуду воздействия в бесконечно малой полосе частот $d(\omega)$.

Гармонические функции, которыми представлены воздействия, сохраняют свой вид при прохождении через линейные системы, поэтому МЭП, как линейные системы, можно рассматривать при действии на них обобщенных сил, изменяющихся по гармоническому закону. При этом обобщенные координаты, характеризующие работу преобразователя, также будут гармоническими. Опуская множитель $e^{j\omega t}$, уравнения (1) и (2) энергии W_{OE} и потока энергии \dot{W}_{OE} можно записать как комплексные величины

$$W_{OE} = F_{OE} h_{OE}^* \tag{1'}$$

$$\dot{W}_{OE} = F_{OE} V_{OE}^* \tag{2'}$$

(знак * означает, что величина комплексно сопряженная).

Обобщённое комплексное сопротивление Z_{OE} определится как $Z_{OE} = F_{OE} / V_{OE} = R_{OE} + j X_{OE}$, где R_{OE} и X_{OE} – активная и реактивная составляющие комплексного сопротивления.

При работе МЭП в режиме генератора в уравнении баланса энергии, представленном в виде

$$\overline{\dot{W}}_{MX,C} = \overline{\dot{W}}_{MX} - \overline{\dot{W}}_{MX,\Pi} - \overline{\dot{W}}_{\mathcal{H}M},$$

поток полной энергии $\overline{W}_{MX,C}$ состоит из втекающего потока \overline{W}_{MX} механической энергии и вытекающих потоков $-\overline{W}_{MX,\Pi}$ механической потенциальной и $-\overline{W}_{2M}$ – электрической энергии.

Поток $\overline{W}_{MX} = F_M V^*(h_0)$, где F_M – приведенная сила, характеризующая действие со стороны источника механической энергии. Поток энергии, преобразованный в электрическую форму $\overline{W}_{\mathcal{M}M}$, частично идет на изменение электрической стороны МЭП $\overline{W}_{\mathcal{M}M,\Pi}$ и частично $\overline{W}_{\mathcal{M}M,\Pi}$ идет в нагрузку $Z_{\mathcal{M}M}$,

$$\overline{W}_{\mathcal{M}} = \overline{W}_{\mathcal{M},\Pi} + \overline{W}_{\mathcal{M},H} = \left|U\right|^2 (1/Z_{\mathcal{M},\Pi} + 1/Z_{\mathcal{M},H})$$
(3)

Таким образом, в электрическую цепь потребителя дойдет только часть $\overline{W}_{\mathcal{3}\mathcal{I}.H}$ потока $\overline{W}_{\mathcal{3}\mathcal{M}}$ энергии $W_{\mathcal{3}\mathcal{M}}$, преобразованной в электрическую форму.

Коэффициент полезного действия МЭП можно определить как отношение активного потока энергии, втекающего в нагрузку, к активному потоку энергии, втекающему в преобразователь:

$$\eta_{\mathcal{I}\mathcal{M}\mathcal{I}\mathcal{I}} = \frac{\operatorname{Re} \dot{W}_{\mathcal{I}\mathcal{I},H}}{\operatorname{Re} \overline{\dot{W}}_{MX}} = \frac{\operatorname{Re} \dot{W}_{\mathcal{I}\mathcal{M}}}{\operatorname{Re} \overline{\dot{W}}_{MX}} \cdot \frac{\operatorname{Re} \dot{W}_{\mathcal{I}\mathcal{I},H}}{\operatorname{Re} \overline{\dot{W}}_{\mathcal{I}\mathcal{M}}} = \eta_{\mathcal{I}\mathcal{M}} \cdot \eta_{\mathcal{I}\mathcal{I},H}, \quad (4)$$

где $\eta_{\mathcal{M}\mathcal{H}}$ – полный коэффициент полезного действия (КПД) преобразователя, $\eta_{\mathcal{H}\mathcal{H}}$ – КПД при передаче электрической энергии в нагрузку, $\eta_{\mathcal{H}\mathcal{H}}$ – электромеханический КПД, представляющий собой отношение активной составляющей потока энергии, преобразованного в электрическую форму $\overline{W}_{\mathcal{M}\mathcal{H}}$, к активной составляющей потока механической энергии, подводимой к преобразователю $\overline{W}_{\mathcal{M}\mathcal{X}}$, $\eta_{\mathcal{H}\mathcal{H}} = k_{\mathcal{H}\mathcal{H}}^2$, где $k_{\mathcal{H}\mathcal{H}}$ – эффективный коэффициент электромеханической связи (КЭМС), который характеризует пьезоэлементы МЭП конечных размеров с определенным распределением деформаций.

3. Возможности пьезоэффекта для генерации электричества, деформация сжатия-растяжения. Для пьезокерамических МЭП, использующих пьезоэффект при деформации сжатия-растяжения (рис. 1), "втекающая" механическая энергия $W_{MX} = W$, как произведение обобщенной силы $F_{o\delta}(t)$ на обобщённую координату $h_{o\delta}(t)$, принимает вид

$$dW = F \cdot d \cdot (\Delta h), \tag{5}$$

где $F = T_{33} \square$ (T_{33} – компонента тензора механического напряжения, \square – площадь пьезокерамики, перпендикулярная *F*), $\Delta h = S_{33} \cdot h$ определяется деформацией S_{33} высоты *h* пьезокерамики.

Рис. 1. Прямой пьезоэлектрический эффект: (I) сжатие; (II) растяжение. Жирными линиями показаны первоначальные размеры пьезокерамики. При сжатии (I) в направлении вектора поляризации Р образуется положительный заряд, а при растяжении (II) – отрицательный

Учитывая, что $S_{33} = s_{33} \cdot T_{33}$ (механическая деформация S_{33} по оси 3 (Z) равна произведению упругой податливости s_{33} на механическое напряжение T_{33}), выражение (5) можно представить в виде:

$$dW = T_{33} \mathcal{A} \cdot d(s_{33} \cdot T_{33} \cdot V / \mathcal{A}) = V T_{33} \cdot s_{33} \cdot d \cdot T_{33}, \qquad (5')$$

откуда

$$W_{MX} = \frac{1}{2} \cdot V \cdot S_{33} (T_{33})^2.$$
 (6)

Для единицы объема пьезокерамики "втекающая" механическая энергия

$$W_{MXOF} = \frac{1}{2} \cdot S_{33} \cdot (T_{33})^2 \,. \tag{6'}$$

Электрическая энергия $W_{\mathcal{M}M}$, преобразованная из механической $W_{\mathcal{M}X}$ после воздействия механического напряжения T_{33} и запасённая пьезоэлектриком, как конденсатором емкости C с разностью потенциалов U и объемом пьезокерамики V, равна

$$W_{\mathcal{H}} = \frac{1}{2} \cdot C \cdot U^2 = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{d_{33}^2 T_{33}^2 \mathcal{A}^2 h}{\epsilon \epsilon_0 \mathcal{A}} = \frac{1}{2 \epsilon \epsilon_0} V (d_{33} T_{33})^2,$$
(7)

где $C = \frac{\varepsilon \varepsilon_0 \Lambda}{h}$, U = Q/C, $Q = d_{33}F = d_{33}T_{33}\Lambda$, $\varepsilon_0 = 8,85 \cdot 10^{-12} \ [\Phi/m]$ – диэлектрическая постоянная, ε – относительная диэлектрическая проницаемость, d_{33} – пьезомодуль.

Для единицы объема пьезокерамики в МЭП сжатия-растяжения электрическая энергия $W_{_{ЭМОБ}}$, преобразованная из механической

$$W_{\mathcal{M}OF} = \frac{1}{V} W_{\mathcal{M}} = \frac{d_{33}^2 T_{33}^2}{2\varepsilon_0 \varepsilon_{33}}$$
(7')

и определяется только механическим воздействием T_{33} и параметрами пьезокерамического материала d_{33} и ε_{33} . Поток $\overline{W}_{_{\mathcal{MOE}}}$ этой энергии частично идет на изменение электрической стороны МЭП $\overline{W}_{_{\mathcal{3Л}.\Pi}}$ (с нагрузкой $Z_{_{\mathcal{3Л}.\Pi}}$) и частично $\overline{W}_{_{\mathcal{3Л}.H}}$ идет в «полезную» нагрузку $Z_{_{\mathcal{3Л}.H}}$.

$$\overline{\dot{W}}_{\mathcal{D}MO\mathcal{D}} = \overline{\dot{W}}_{\mathcal{D}\Pi,\Pi} + \overline{\dot{W}}_{\mathcal{D}\Pi,H} = \left|U\right|^2 (1/Z_{\mathcal{D}\Pi,\Pi} + 1/Z_{\mathcal{D}\Pi,H}).$$
(8)

Значения энергии, запасенной при одном воздействии на МЭП сжатия-растяжения с объемом пьезокерамики 1 см³, оценивается, при типичных, реализуемых в производстве значениях $d_{33} = 500$ пКл/Н, $\varepsilon = 2000$ и $T_{33} = 6 \cdot 10^7$ Па (при котором ещё керамика не деградирует и сохраняется линейность преобразования), как $W_{3MOE} = W_{PAE} = 0,024$ Дж. Максимальное значение W_{MAX} энергии при разрушающем воздействии $T_{33} = 30 \cdot 10^7$ Па может быть оценено, в первом приближении, как $W_{MAX} = 0,61$ Дж.

Отметим, что эта величина не зависит от конструкции пьезоэлементов МЭП, является ли они монолитными ($10 \times 10 \times 10$ мм), или многослойными пьезоэлементами с 200-ми слоями по 50 мкм. Расстояние *h* между электродами определяет, при фиксированном значении механического напряжения, величину U_c возникающей разности потенциалов:

$$U_C = \frac{d_{33}T_{33}h}{\varepsilon_{33}\varepsilon_0},\tag{9}$$

диапазон напряжений для реализуемых толщин от 10 мм до 50 мкм достаточно широк – от 17 кВ до 85 В соответственно.

Для МЭП сжатия-растяжения механоэлектрический КПД пьезоэлементов

$$\eta_{\mathcal{H}}^{C} = k_{\mathcal{H}C}^{2} = \frac{W_{\mathcal{H}}}{W_{MX}} = \frac{\frac{1}{2\varepsilon\varepsilon_{0}}V(d_{33}T_{33})^{2}}{\frac{1}{2}\cdot V\cdot s_{33}(T_{33})^{2}} = \frac{d_{33}^{2}}{\varepsilon\varepsilon_{0}s_{33}} = k_{33}^{2}, \ W_{\mathcal{H}} = k_{33}^{2}W_{MX},$$
(10)

где $k_{\Im \to \phi C}$ – эффективный КЭМС для деформации сжатия-растяжения, $k_{\Im \Im}$ – КЭМС для сжатия-растяжения (рис. 1), когда направления поляризации и действия сил параллельны и деформации распределены по объему равномерно. $\eta_{\Im M}^{C} = k_{\Im \Im}^{2} \approx 0,5$ для МЭП сжатия-растяжения на пьезокерамике ЦТС.

По выражению (7') можно определить эффективность пьезокерамических материалов для генерации электроэнергии. Оптимальное значение электрической энергии $W_{3MOE} = 25 \cdot 10^{-3}$ Дж, запасенной пьезокерамическим МЭП объемом 1 см³ при одном нажатии будет использовано для дальнейших оценок.

4. Оценка значения электрической энергии, запасаемой пьезокерамическими МЭП на одном метре автоколеи. Примем, что автомобили с расстоянием между осями 2 метра, массой 2400 кг, движутся со скоростью 20 м/с (72 км/час) с интервалом 8 м. Площадь контакта колеса с грунтом составляет 0,2 × 0,1 м, где 0,2 м – ширина протектора. Масса равномерно (по 600 кг) распределена между четырьмя колёсами автомобиля.

Для пьезоэлементов с размерами $1 \times 1 \times 1$ см, давлении $6 \cdot 10^7$ Па для МЭП, расположенных на расстояниях 0,1 м друг от друга электрическая энергия, запасаемая МЭП при одном нажатии, равна $25 \cdot 10^{-3}$ Дж, при снятии давления запасается еще $25 \cdot 10^{-3}$ Дж, соответственно для участка дороги длиной 1 м можно получить мощность 4 Вт потока энергии \overline{W}_{3M} , преобразованной в электрическую форму. Значение генерируемой электрической энергии $W_{3Л.H}$ определяется $\eta_{3Л.H}$ – КПД при передаче электрической энергии в нагрузку.

5. Оценка значения электрической энергии, запасаемой пьезокерамическими МЭП при механической вибрации вагона. Рассмотрим случай железнодорожного вагона массой 40·10³ кг, с четрьмя колесными пары с нагрузкой на пару ~ 100·10³ Н и частотой собственных колебаний 25 Гц.

При расположении МЭП на каждой колесной паре для получения оптимального давления $T_{33} = 6 \cdot 10^7$ Па площадь МЭП должна составлять $\mathcal{A} \approx 20$ см². При толщине пьезокерамики 1 см МЭП площадью 20 см² при одном цикле сжатия-растяжения может запасать

 $W_{\mathcal{M}} = 20 \cdot 2 \cdot 25 \cdot 10^{-3} \, \text{Дж} = 1 \, \text{Дж}$, при 25 циклах в секунду запасается электрическая энергия для мощности 25 Вт потока энергии $\overline{W}_{\mathcal{M}}$. При увеличении толщины МЭП в 10 раз (объём $\approx 200 \text{ см}^3$) запасённая энергия для четырёх МЭП запасённая энергия может достигать значений, достаточных для развития мощности 1 кВт.

6. Возможности пьезоэффекта для генерации электричества, деформация изгиба. Рассмотрим изгибные колебания биморфных МЭП, состоящих из двух поляризованных по толщине пьезокерамических пластин, соединенных между собой. Направления поляризации Р и возникающих электрических полей E, размеры, схемы крепления и электрических соединений приведены на рис. 2.

Рис. 2. Биморфный пьезокерамический механо-электрический преобразователь с опёртыми концами

В силу малости ширины *b* и толщины *t* пластин по сравнению с длиной *l* можно принять механические напряжения $T_{22} \cong 0$ и $T_{33} \cong 0$, и воспользоваться уравнениями пьезоэффекта в виде:

$$D_3 = d_{31}T_{11} + \varepsilon_{33}^T E_3, \ S_{11} = d_{31}E_3 + s_{11}^E T_{11}.$$
(11)

Если смещение h(x) поверхности биморфа записать как функцию координаты $x h(x) = h_0 \theta(x)$, то деформацию растяжения S_{11} в направлении оси 1(x) тонкого слоя пластины на расстоянии z от средней поверхности, которая при изгибе остается нерастянутой, можно определить из соотношения:

$$S_{11} = \frac{(R_1 + z)d\varphi - R_1 d\varphi}{R_1 d\varphi} = \frac{z}{R_1} = -zh_0 \frac{\partial^2 \theta(x)}{\partial x^2}, \qquad (12)$$

где радиус кривизны R_1 пластины при ее изгибе (рис. 2) определен как

$$R_1 = 1/(\partial^2 h / \partial x^2).$$

В отсутствии электрического поля, при $E_3 = 0$ из уравнений (11) следует, по закону Гука,

$$T_{11} = S_{11} / s_{11}^{E} = \left(z \cdot h_0 / s_{11}^{E} \right) \cdot \partial^2 \Theta(x) / \partial x^2 .$$
(13)

Упругое напряжение в любом слое биморфной пластины определяется координатами z – расстояние от средней линии и x – положение на оси 1(x), оно изменяется от нулевого значения для средней поверхности, где z = 0, до максимального значения на поверхности пластины, где z = t/2.

Максимальное значение $T_{11} = T_p$ соответствует прочности пьезокерамики ЦТС на растяжение ($T_p \approx (20 \div 30)$ МПа) и определяет зависимость допустимого радиуса кривизны R_p от толщины *z* пластины биморфа. Из (12) и (13) имеем

$$R_{P} = \frac{z}{S_{11}} = \frac{z}{T_{11P} \cdot s_{11}^{E}} \,. \tag{14}$$

Для каждого слоя биморфного МЭП механическая энергия может быть записана как произведение обобщенной силы на обобщенную координату, в нашем случае, при $E_3 = 0$, механическая энергия для всего объема \tilde{V}

$$W_{MX}^{E} = \frac{1}{2} \int_{\tilde{V}} T_{11} S_{11} d\tilde{V} = \frac{h_0^2 b}{2s_{11}^E} \int_{0}^{t/2} \int_{-t/2}^{t/2} z^2 \left(\frac{\partial^2 \theta(x)}{\partial x^2}\right)^2 dz dx = \frac{h_0^2 J}{2s_{11}^E} \int_{0}^{t} \left(\frac{\partial^2 \theta(x)}{\partial x^2}\right)^2 dx \quad (15)$$

где $J = bt^3/12$ – момент инерции поперечного сечения пластины.

При изгибных деформациях свободного биморфа с опертыми концами, к середине которого приложена сила F, $\theta(x) = (16/5l) \cdot (x - 2x^3/l^2 + x^4/l^3)$ и запасаемая механическая энергия W_{MXC}^E

$$W_{MXC}^{E} = \frac{h_{0}^{2}J}{2s_{11}^{E}} \int_{0}^{l} \left(\frac{\partial^{2} \left[\left(\frac{16}{5l} \right) \cdot \left(x - \frac{2x^{3}}{l^{2}} + \frac{x^{4}}{l^{3}} \right) \right]}{\partial x^{2}} \right)^{2} dx$$
(16)

Для изгибных деформаций консоли, к незакрепленному концу которой приложена сила F (рис. 3), $\theta(x) = (x^2/2l^2) \cdot (3 - x/l)$ и запасаемая механическая энергия W_{MXK}^E определится из (15) как

Рис. 3 Биморфный пьезокерамический электромеханический преобразователь с одним закрепленным концом

Значение величины U_{H} возникающей разности потенциалов зависит от способа электрического соединения пластин биморфа, максимальное значение U_{H} определится как

$$U_{II} = \frac{d_{31}T_{11}t}{\varepsilon_{33}\varepsilon_0} \tag{18}$$

(17)

При максимальном значении $T_{11P} \approx 30$ МПа, $d_{31} = 250 \cdot 10^{-12}$ Кл/Н, $\varepsilon_{33} = 2000$, $\varepsilon_0 = 8.85 \cdot 10^{-12}$ Ф/м, диапазон максимальных напряжений для реализуемых толщин *t* от 1 мм до 50 мкм достаточно широк, от 420 до 21 В.

Для пьезоэлементов МЭП при изгибных деформациях механоэлекрический КПД $\eta_{\mathcal{H}}^{H} = k_{\mathcal{H}}^{2}$, где $k_{\mathcal{H}}$ определяется видом механической системы.

Для свободного биморфа на двух опорах (рис. 2) $k_{3\phi HC} = 0,78 k_{31}$, для консольно закрепленного биморфа (рис. 3) $k_{3\phi HK} = 2k_{31}/3$, для свободной круглой пластины с опорой по периметру $k_{3\phi HII} = 3k_p/4$, для биморфов и пластин, жестко закрепленных по концам или периметру, $k_{3\phi H} = 0$ (k_{31} – КЭМС для случая, когда направление действия сил перпендикулярно поляризации и деформации распределены по объему равномерно, k_p – КЭМС для случая радиального направления действия

сил перпендикулярно поляризации (в круглых пластинах, планарный коэффициент электромеханической связи).

7. Оценка значения электрической энергии, запасаемой биморфными пьезокерамическими ЭМП. Биморфные пьзоэлементы с характеристиками, приведенными в таблице, разработаны в ОАО НИИ Элпа для работы в режиме обратного пьезоэффекта.

Таблица

Характеристики биморфных пьезоэлементов ОАО НИИ Элпа

№ п/п	Габариты <i>l×b×t,</i> мм	<i>V</i> , B	<i>R</i> , мм	<i>F</i> , H	<i>f</i> , Гц
1	100×22×1,0	80	1,4	0,30	56
2	40×12×0,6	80	1,1	0,35	150
3	55×2×0,8	200	1,0	0,02	106
4	35×2,5×0,6	150	0,8	0,05	196

(V - рабочее напряжение питания, B, ±; R - полное перемещение (размах) рабочего конца биморфного пьезоэлемента, мм; <math>F - усилие, развиваемое биморфным пьезоэлементом при подаче управляющего напряжения, при заблокированном (нулевом смещении) на рабочем конце (блокирующее усилие), H; f - pезонансная частота, Γ ц).

Пусть при работе этих пьезоэлементов в режиме генерации действие силы F, равной блокирующему усилию, на незакрепленный конец биморфа приведет к перемещению R. Выражение втекающей механической энергии $W_{MX} = W$, как произведение обобщенной силы $F_{ob}(t)$ на обобщенную координату $h_{ob}(t)$, принимает вид

$$dW = F \cdot d \cdot (\Delta R). \tag{19}$$

Механическая энергия W_{MXK1} одного цикла колебаний определится как

$$W_{MXK1} = 2\frac{1}{2}FR = FR$$
. (20)

В предположении, что биморфы совершают вынужденные колебания на частоте f, механическая энергия W_{MXK1C} за секунду определится как

$$W_{MXK1C} = W_{MXK1C} \cdot f = FRf.$$
⁽²¹⁾

На рис. 4 приведена типичная амплитудно-частотная характеристика (АЧХ) консольно закрепленного биморфа. На распространенной частоте промышленных вибраций f = 100 Гц его характеристики соответствуют приведенным в таблице значениям. Для

МЭП на основе такого биморфа механическая энергия одного цикла колебаний из выражений (20) и (21) $W_{MXK1} = 0.385 \cdot 10^{-6}$ Дж, втекающая в МЭП за секунду механическая энергия $W_{MXK1C} = 0.385 \cdot 10^{-4}$ Дж (поток механической энергии, подводимой к преобразователю $\overline{W}_{MXK1C} = 0.385 \cdot 10^{-4}$ Дж/с).

Рис. 4. Амплитудно-частотная характеристика (АЧХ) консольно закрепленного биморфа с размерами 40×12×0,6 мм; управляющее напряжение питания 10 В

Поток энергии, преобразованный в электрическую форму

$$\overline{\dot{W}}_{\Im MK} = \overline{\dot{W}}_{MXK1C} \cdot \eta^{H}_{\Im M} = \overline{\dot{W}}_{MXK1C} \cdot k^{2}_{\Im \Phi H} = \overline{\dot{W}}_{MXK1C} (2k_{31}/3)^{2}$$
$$= 0.385 \cdot 10^{-4} \cdot 0.045 = 17.5 \cdot 10^{-6} [Bm]$$

Поток электрической энергии в нагрузку $\overline{W}_{\mathfrak{I}\mathcal{I}\mathcal{I}\mathcal{H}}$ будет определяться значением $\eta_{\mathfrak{I}\mathcal{I}\mathcal{I}\mathcal{H}} - K\Pi \mathcal{I}$ при передаче электрической энергии в нагрузку. При $\eta_{\mathfrak{I}\mathcal{I}\mathcal{I}\mathcal{H}} = 0,5$ реализуемая мощность достаточна, например, для питания датчиков давления в шинах автомобилей. Максимальное значение напряжения согласно (18) равно 126 В.

Отметим, что при работе на резонансной частоте значение *R* размаха колебаний и, соответственно, мощность ЭМП может возрасти на порядок, ограничиваясь значением прочности пьезокерамики на разрыв.

8. Сравнительная оценка возможностей МЭП на пьезокерамике ЦТС при деформациях сжатия-растяжения и изгиба. Анализ формул (6) и (15) позволяет провести сравнительную оценку втекающих потоков механической энергии при деформациях растяжения-сжатия изгиба. Для МЭП растяжения-сжатия И механическое напряжение $T_{33} \approx 60$ МПа одинаково по всему объему. Для МЭП изгиба механическое напряжение изменяется от нуля на средней поверхности биморфа (z = 0)до максимального $T_{11P} \approx (20 \div 30)$ МПа при z = t/2. В первом случае напряжение ограничено

условиями деградации (~ 60 МПа), во втором – прочностью керамики на растяжение (~20...30 МПа). Учитывая распределение напряжений и квадратичную зависимость W_{MX} от механического напряжения T, можно полагать, что максимальные значения запасаемой механической энергии в единице объема пьезокерамических МЭП при деформациях растяжения-сжатия на порядок больше, чем при изгибных деформациях.

Оценка значений электромеханического КПД $\eta_{\mathcal{M}}^{H}$ для изгибных деформаций пьзоэлементов из керамики ЦТС при $k_{31} = 0,32$ приводит к значениям

$$\eta_{\mathcal{M}}^{H} = k_{\mathcal{I}}^{2} \approx (0,44 \div 0,61) \cdot k_{31}^{2} \approx (0,044 \div 0,061),$$
(22)

на порядок меньшим, чем $\eta_{\mathcal{M}}^{C} = k_{33}^{2} \approx 0,5$ при деформации сжатиярастяжения. Однако МЭП при изгибных деформациях более эффективны для генерации электрической энергии при малых значениях действующих сил и/или механических напряжений.

9. Заключение. Пьезокерамические механоэлектрические преобразователи решают две из трех задач при генерации электричества – поглощения механической энергии из окружающей среды и преобразования механической энергии в электрическую энергию; третья задача – обработка и хранение преобразованной электрической энергии в работе не рассматривалась.

Механические воздействия – периодические, единичные кратковременные И случайные – могут быть преобразованы В электрическую энергию при соответствующем выборе размеров, моды колебаний и пьезокерамического материала МЭП. Производимая энергия пропорциональна частоте и упругому напряжению сжатиярастяжения, увеличение генерируемой энергии может быть получено при работе на резонансе. Требования к пьезокерамическим материалам для МЭП, работающим в дорезонансном и резонансном режимах, несколько отличаются. В обоих случаях требуются пьезокерамические материалы с высокими значениями коэффициента электромеханической связи и диэлектрической проницаемости, так как механоэлектрический КПД пропорционален коэффициенту электромеханической связи, а большая емкость понижает импеданс на выходе ЭМП и способствует отбору мощности. Для резонансного режима требуются также высокая динамическая добротность и прочность на растяжение.

Работа выполнена при финансовой поддержке в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы".

Список литературы

- 1. Priya S. Advances in energy harvesting using low profile piezoelectric transducers // Journ. Electroceramics. 2007. V. 19, N. 1. P. 167–184.
- Blystad L.-C. J., Halvorsen E. An energy harvester driven by colored noise // Smart Mater. Struct. 2011. V. 20. P. 025011.
- 3. Cho J.H., Richards R.F., Bahr D.F., Richards C.D., Anderson M.J. Efficiency of energy conversion by piezoelectrics // Appl. Phys. Lett. 2006. V. 89. P. 104107.
- 4. Ujihara M., Carman G.P., Lee D.G. Thermal energy harvesting device using ferromagnetic materials // Appl. Phys. Lett. 2007. V. 91. P. 093508.
- Sebald G., Pruvost S., Guyomar D. Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic // Smart Mater. Struct. 2008. V. 17. P. 015012.
- Penella M.T., Gasulla M. A review of commercial energy harvesters for autonomous sensors // Instrumentation and Measurement Technology Conference Proceedings. Warsaw, 2007. P. 9718147.
- Sun C., Qin L., Li F., Q.-M. Wang. Piezoelectric Energy Harvesting using single crystal Pb(Mg_{1/3}Nb_{2/3})O_{3-x}/PbTiO₃ (PMN-PT) Device // Journ. Intelligent Mater. Syst. Struct. 2009. V. 20. N. 5 559-568.
- Ng T.H., Liao W.H. Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor. Journ. Intelligent Mater. Syst. Struct. 2005. V. 16, N. 10. 785-797.

COMPARATIVE CHARACTERISTICS OF PIEZOCERAMIC MECHANOELECTRIC TRANSDUCERS FOR GENERATION OF ELECTRICITY

V. A. Golovnin¹, E. S. Gornev¹, A. V. Daineko¹, D. A. Dobrynin¹, D. V. Druina², N. O. Mamkina²

¹Research institute "ELPA", Zelenograd ²Tver State University *Chair of Applied Physics*

The energy balance of piezoceramic mechanoelectric transducers in the electric energy generation mode has been considered. A comparison is made of the piezoeffect possibilities in lead zirconate-titanate (LZT) piezoceramics for the generation of electricity during compression-extension and bending deformation. Examples of the applications of dissipated mechanical energy of moving transport conversion into electric energy with the aid of mechanoelectric transducers for the realization of autonomous power sources are given.

Keywords: piezoceramic mechanoelectric transducers, piezoelectric effect, LZT

Об авторах:

ГОЛОВНИН Владимир Алексеевич – кандидат физ.-мат. наук, начальник лаборатории ОАО НИИ "ЭЛПА", 124460 Москва, Зеленоград, Северная промышленная зона, Панфиловский проспект, д.10, *e-mail:* golovnin41@rambler.ru;

ГОРНЕВ Евгений Сергеевич – доктор технических наук, заместитель генерального директора по НТР ОАО НИИ "ЭЛПА";

ДАЙНЕКО Андрей Владимирович – директор Центра управления проектами ОАО НИИ "ЭЛПА";

ДОБРЫНИН Данила Андреевич – техник лаборатории пьезокерамических пленок ОАО НИИ "ЭЛПА";

ДРУИНА Дарья Викторовна – магистрант кафедры прикладной физики ТвГУ, 170100, г. Тверь, ул. Желябова, 33;

МАМКИНА Наталья Олеговна – аспирант кафедры прикладной физики ТвГУ.