УДК 541.6

ШЕСТИВЕРШИННЫЕ ГРАФЫ И ИХ ПРИМЕНЕНИЕ

Ю.Г. Папулов, Ю.А. Федина, М.Г. Виноградова

Тверской государственннвый университет Кафедра физической химии

Обсуждаются графы с n = 6 вершинами и некоторые их химические приложения.

Ключевые слова: графы, изображение молекул, перечисление графов.

Теория графов – язык, удобный для формулировки многих научных проблем и эффективный инструмент их решения. По этой причине она мощно и стремительно вторгается в самые разные области химии [1; 2]. В работе рассматриваются топологические (геометрические) и комбинаторно-алгебраические модели структурных объектов химии.[2–4].

При n=6 вершинах и $m=0,\,1,\,2,\,15$ ребрах существуют $g_n=156$ простых графов, $c_n=112$ простых связных графов, 6 деревьев (5 деревьев-алканов), 8 эйлеровых и 48 гамильтоновых графов, 105 простых связных планарных графов и т.д.; в их числе [3; 4]:

$$m = 0$$
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 $g_n = 1$ 1 2 5 9 15 21 24 24 21 15 9 5 2 1 1 c_n 0 0 0 0 0 6 13 19 22 20 14 9 5 2 1 1

(рис. 1-4)./

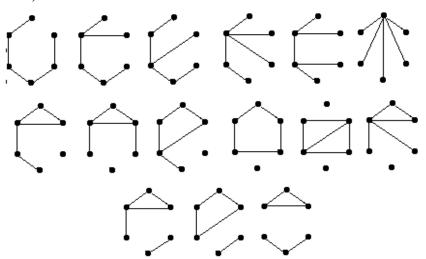


Рис. 1. Простые графы с n=6 и m=5. Первые шесть графов представляют собой деревья

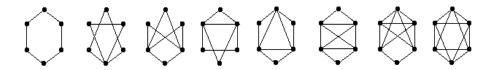


Рис. 2. Эйлеровы графы с шестью вершинами

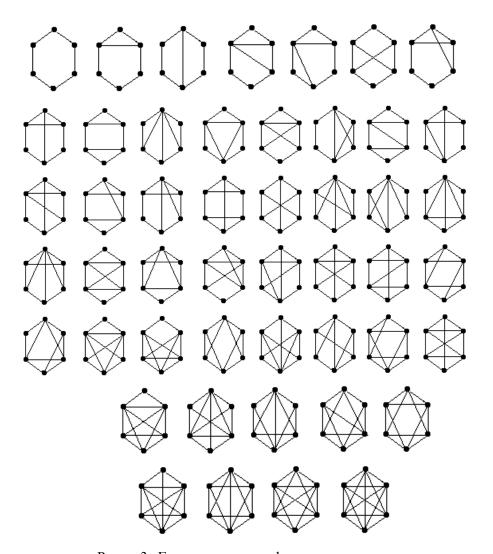


Рис. 3. Гамильтоновы графы с шестью вершинами

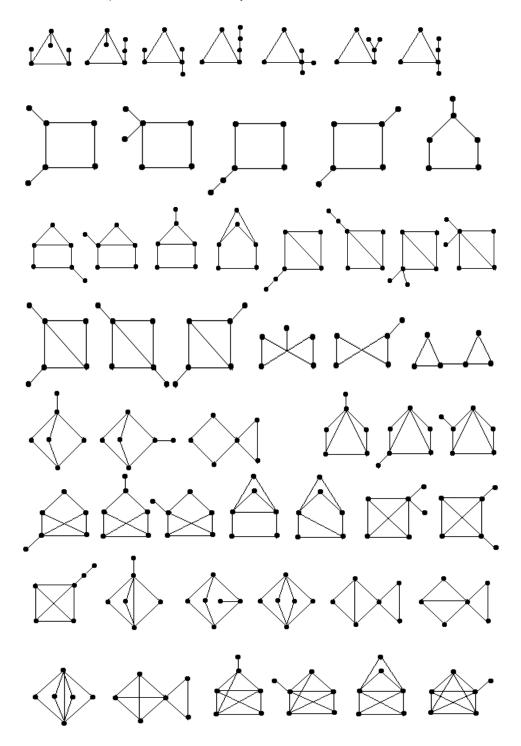


Рис. 4. Другие простые связные графы с шестью вершинами

Затронуты следующие аспекты.

1. Графы как средство изображения молекул

Отмечены наиболее интересные в практическом отношении шестивершинники: октаэдр, тригональная призма и тригональная антипризма, тетрагональная бипирамида (рис. 5) и др.

Рис. 5. Некоторые шестивершинники

Несомненный интерес представляют графы и мультиграфы, имитирующие бензол (граф с кратностью ребер 1,5) и его валентные изомеры [5; 6] (рис. 6); бицикло-[2, 2, 0]-гексадиен-2,5 (бензол Дьюара); тетрацикло-[2,2,0,0^{2,6},0^{3,5}]-гексан, или призман (бензол Ладенбурга); трицикло-[3,1,0,0^{4,6}]-гексен-2, или бензвален (бензол Хюккеля); бициклопроп-2-енил, бензмебиусстрипан (гипотетический хиральный бензол Балабана), а также циклогексан (простой цикл C_6), структуры Кекуле и т.д. [1; 3].

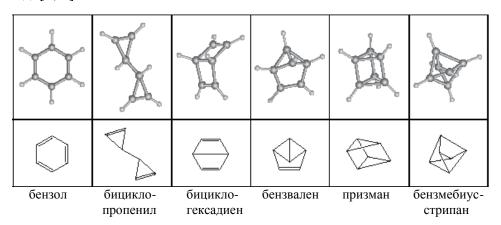


Рис. 6. Валентные изомеры бензола

2. Перечисление графов

Изучение какого-либо класса объектов полезно начинать с систематики этих объектов. При этом важно знать не только общее число членов данного ряда (их полный список, или перечень), но и вид и число изомеров. Химические изомеры как комбинаторные графические объекты изучаются методами теории перечисления графов.

Вывод изомеров замещения молекулярных полиэдров может быть дан на основе *теории перечсления Пойа* [1; 2; 6–8].

В этой теории группа симметрии (G) исходного полиэдра счита-

ется известной. Операции симметрии полиэдра индуцируют на множестве мест его замещения (по вершинам, рёбрам или граням) подстанов- κu , записываемые в виде произведения циклов через \mathbf{f}'_{α} , где l – число циклов, а α – их порядок (длина). Выражение $Z_G = 1/|G| \sum_{g \in G} f^l_{\ \alpha}(g) \ f^m_{\ \beta}(g) \ ...$

$$Z_G = 1/|G| \sum_{g \in G} f^l_{\alpha}(g) f^m_{\beta}(g) \dots$$
 (1)

(|G| - порядок G) называется *цикловым индексом группы* подстановок. Используя в (1), согласно Пойа, замены вида $f'_{\alpha}=(h^{\alpha}+x^{\alpha}+y^{\alpha}+...)^{l}$, получим производящую функцию $\Phi_{G}=h^{\nu-}+P\;h^{\nu-1}x+Q\;h^{\nu-2}x^{2}+...$, где коэффициенты (1, P, Q, ...) равны числу изомеров данного вида.

Замещённые полиэдров, имёющих у мест возможного замещения, распадаются на p(v) семейств (обозначим их через h^v , $h^{v-1}x$, h^{v-1} $^{2}x^{2}$), соответствующих разбиению числа ν на целые положительные части. Так, замещенные полиэдров с шестью местами замещения (по вешинам) разделяются (по числу разбиений числа 6) на 11 семейств h^6 , h^5x , h^4x^2 , h^4xy , h^3x^3 , h^3x^2y , h^3xyz , $h^2x^2y^2$, h^2x^2yz , h^2xyzu , hxyzuvw, содержащие соответственно 1, 1, 2, 2, 2, 3, 4, 5, 6, 9, 15 изомеров для октаэдра; 1, 1, 3, 3, 3, 6, 10, 11, 16, 30, 60 изомеров для шестиугольника (бензола, см. рис. 7) и т.д. (табл. 1).

Таблица 1 Изомеры замещения полиэдров, содержащих щесть мест возможного замещения (по вершинам)

№	Семей-	Число изомеров ¹													
	ство	Октаэдр		ПШ		ТΠ		TA		ТБ		ПП		ДТ	
		\mathbf{O}_{h}	0	\mathbf{D}_{6h}	\mathbf{D}_6	\mathbf{D}_{3h}	\mathbf{D}_3	\mathbf{D}_{3d}	\mathbf{D}_3	\mathbf{D}_{4h}	\mathbf{D}_4	$\mathbf{C}_{3\mathbf{V}}$	\mathbf{C}_3	$\mathbf{C}_{2\mathbf{V}}$	\mathbf{C}_2
1	h ⁶	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	h ⁵ x	1	1	1	1	1	1	1	1	2	2	2	2	3	3
3	h^4x^2	2	2	3	3	3	4	3	4	4	4	3	3	7	9
4	h ⁴ xy	2	2	3	3	3	5	3	5	5	5	4	6	11	15
5	h^3x^3	2	2	3	3	3	4	3	4	4	4	4	4	8	10
6	h^3x^2y	3	3	6	6	6	10	6	10	8	9	8	12	20	30
7	h^3xyz	4	5	10	10	10	20	10	20	12	15	12	24	36	60
8	$h^2x^2y^2$	5	6	11	11	11	18	11	18	12	15	12	18	30	48
9	h^2x^2yz	6	8	16	16	16	30	16	30	17	24	20	36	52	90
10	h ² xyzu	9	15	30	30	30	60	30	60	27	45	36	72	96	180
11	hxyzuv	15	30	60	60	60	120	60	120	45	90	72	144	180	360

¹Приняты сокращения: ПШ – правильный шестиугольник, ТП – тригональная призма, TA – тригональная антипризма, TБ – тетрагональная бипирамида, ПП – пентагональная пирамида, ДТ – двухшапочный тетраэдр.

Вестник ТвГУ. Серия "Химия". 2014. Выпуск 1.

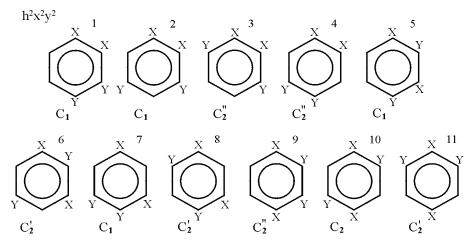


Рис. 7. Изомеры замещения бензола вида $C_6H_2X_2Y_2$ (указаны вращательные подгруппы молекул)

Если в качестве группы симметрии исходного полиэдра взять группу вращений (подгруппу его точечной группы), то цикловой индекс (1) и производящая функция будут включать в себя зеркальные изомеры. Так могут быть выявлены хиральные изомеры.

Зная числа изомеров в семействах, несложно определить число представителей X-, XY-, ... замещенных полиэдра в этих семействах, а значит, и общее число представителей (табл. 2). Мы имеем 13 представителей X-замещенных бензола, 92 представителя XY-замещенных бензола и т.д.* (см. табл. 2). Можно также найти число замещенных бензола, распределенных по симметрии (табл. 3 и 4).

$$\mathbf{r}(k) = \Gamma_{k+1}^{6} = (1/6!)(k+1)(k+2)(k+3)(k+4)(k+5)(k+6).$$

Число видов замещенных бензола по семействам, выражается:

$$\begin{split} \mathbf{r}_1(k) &= k{+}1, \ \mathbf{r}_2(k) = k(k{+}1), \mathbf{r}_3(k) = k(k{+}1), \mathbf{r}_4(k) = (1/2)(k{-}1)k(k{+}1), \\ \mathbf{r}_5(k) &= (1/2)k(k{+}1), \mathbf{r}_6(k) = (k{-}1)k(k{+}1), \mathbf{r}_7(k) = (1/6)(k{-}2)(k{-}1)k(k{+}1), \\ \mathbf{r}_8(k) &= (1/6)(k{-}1)k(k{+}1), \mathbf{r}_9(k) = (1/4)(k{-}2)(k{-}1)k(k{+}1), \\ \mathbf{r}_{10}(k) &= (1/24)(k{-}3)(k{-}2)(k{-}1)k(k{+}1), \\ \mathbf{r}_{11}(k) &= (1/6!)(k{-}4)(k{-}3)(k{-}2)(k{-}1)k(k{+}1) \;. \end{split}$$

Зная эти числа, несложно определить число представителей X-, XY-, ... замещенных бензола в семействах:

$$\begin{split} &\tau_1 = r_1\,,\,\tau_2 = r_2\,,\,\tau_3 = 3r_3\,,\;\;\tau_4 = 3r_4\,,\;\;\tau_5 = 3r_5\,,\;\;\tau_6 = 6r_6\,,\\ &\tau_7 = 10r_7\,,\,\tau_8 = 11r_8\,,\;\;\tau_9 = 16r_9\,,\;\;\tau_{10} = 30r_{10}\,,\;\;\tau_{11} = 60r_{11}\,. \end{split}$$

Следовательно, общее число представителей замещенных бензола будет

$$\tau(k) = r_1 + r_2 + 3r_3 + 3r_4 + 3r_5 + 6r_6 + 10r_7 + 11r_8 + 16r_9 + 30r_{10} + 60r_{11}.$$

У нас $\tau(1) = 13$, $\tau(2) = 92$, $\tau(3) = 430$ и т.д.

^{*} Общее число видов замещенных бензола дается числом сочетаний из k+1 элементов (k- число разноименных заместителей) по шесть с повторениями:

 $\label{eq:2.2} \mbox{ Таблица 2 } \mbox{ Распределение } \mbox{ X-, XY-,... замещенных бензола по семействам }$

Вид зам.	Число представителей											
бензола	Всего	в семействах										
		I II III IV V VI VII VIII IX							X	XI		
X	13	2	2	6	0	3	0	0	0	0	0	0
XY	92	3	6	18	9	9	36	0	11	0	0	0
XYZ	430	4	12	36	36	18	144	40	44	96	0	0
XYZU	1505	5	20	60	90	30	360	200	110	480	150	0
XYZUV	4291	6	30	90	180	45	720	600	220	1440	900	60
XYZUVW	10528	7	42	126	315	63	1260	1440	385	3360	36150	420

Таблица 3 Распределение изомеров замещения бензола в семействах по симметрии

No	Семейство	Число изомеров 1									
Π/Π		всего	\mathbf{C}_{S}	C _{2h}	\mathbf{c}_2	v	\mathbf{D}_{2h}	\mathbf{D}_{3h}	D 6h		
			(\mathbf{C}_1)	(\mathbf{C}_2)	(C' ₂)	C"2)	(\mathbf{D}_2)	(\mathbf{D}_3)	(\mathbf{D}_6)		
1	h6	1	0	0	0	0	0	0	1		
2	h ⁵ x	1	0	0	1	0	0	0	0		
3	h^4x^2	3	0	0	1	1	1	0	0		
4	h ⁴ xy	3	2	0	1	0	0	0	0		
5	h^3x^3	3	1	0	1	0	0	1	0		
6	h^3x^2y	6	4	0	2	0	0	0	0		
7	h ³ xyz	10	10	0	0	0	0	0	0		
8	$h^2x^2y^2$	11	4	1	3	3	0	0	0		
9	h^2x^2yz	16	14	0	2	0	0	0	0		
10	h ² xyzu	30	30	0	0	0	0	0	0		
11	hxyzuv	60	60	0	0	0	0	0	0		

¹В скобках указаны подгруппы вращений.

Таблица 4 Распределение X-, XY-,... замещенных бензола по симметрии

Вид зам.	Число представителей ¹										
бензола	Всего	\mathbf{C}_{S}	C _{2h}	C	2v	\mathbf{D}_{2h}	\mathbf{D}_{3h}	D _{6h}			
		(\mathbf{C}_1)	(\mathbf{C}_2)	$(\mathbf{C'}_2)$ $(\mathbf{C''}_2)$		(\mathbf{D}_2)	(\mathbf{D}_3)	(\mathbf{D}_6)			
X	13	1	0	5	2	2	1	2			
XY	92	37	1	33	9	6	3	3			
XYZ	430	266	4	144	24	12	6	4			
XYZU	1505	1120	10	290	50	20	10	5			
XYZUV	4291	3515	20	615	90	30	15	6			
XYZUVW	10528	9121	35	1155	147	42	21	7			

¹В скобках указаны подгруппы вращений.

Список литературы

- 1. Папулов Ю.Г., Розенфельд В.Р., Кеменова Т.Г. Молекулярные графы: учеб. пособие. Тверь: ТвГУ, 1990. 88 с.
- 2. Папулов Ю.Г., Виноградова М.Г. // Математика и химия: монография. Тверь: ТвГУ, 2007. 200 с.
- 3. Папулов Ю.Г., Кеменова Т.Г., Федина Ю.А. // Расчетные методы в физической химии. Тверь: ТвГУ, 1988. С. 3–15.
- 4. Папулов Ю.Г., Федина Ю.А., Фурялина О.С. // Тез. докл. Междунар. науч. конф. «Моделирование нелинейных процессов и систем». М.: МГТУ «Станкин». 2008. С. 115.
- 5. Корнилов М.Ю, Корнилов А.М. // Химия и жизнь. 2007. № 12. С. 52–54.
- 6. Папулов Ю.Г., Папулова Д.Р. Строение молекул и физические свойства: монография. Тверь: ТвГУ, 2010. 280 с.
- 7. Харари Ф., Пальмер Э. Перечисление графов: пер. с англ. М.: Мир, 1977. 324 с.
- 8. Папулов Ю.Г. // Вестник ТвГУ Серия: «Химия». 2003, Вып. 1. С. 5–16.

SIX-VERTEX GRAPHS AND THEIR APPLICATIONS

Yu.G. Papulov, Yu.A. Fedina, M.G. Vinogradova

Tver State University

Department of physical chemistry

The graphs with six vertices and their some chemical applications are discussed. *Key words:* graphs, represent of molecules, graphical enumeration.

Об авторах:

ПАПУЛОВ Юрий Григорьевич – доктор химических наук профессор, заведующий кафедой физической химии ТвГУ, e-mail: papulov__yu@mail.ru

ФЕДИНА Юлия Алексеевна – соискатель кафедры физической химии я ТвГУ, e-mail: fedina_yuliya@yahoo.com

ВИНОГРАДОВА Марина Геннадьевна – доктор химических наук профессор кафедры физической химии ТвГУ, e-mail: mgvinog@mail.ru