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It is shown that the difficulties in constructing the integro cubic spline
proposed by H. Behforooz [1] may be overcome using its B-representation.
The approximation properties of such a spline are also considered.
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1. Introduction

In [1] H. Behforooz introduced integro cubic splines, and the accuracy of this type
splines was shown by numerical experiments. Motivation of construction of such splines
was also explained in [1] by numerous practical applications. To construct the integro
cubic splines proposed in [1], besides two end conditions, also one additional/or third
end condition is needed that seems to be unnaturally. He pointed out that to construct
the integro cubic splines in terms of the second derivative with any end conditions, one
had to solve a system of linear equations with a full matrix of higher order. In this paper
we show that using B-representation of cubic splines one can overcome the difficulties
arising in H. Behforooz approaches. We also prove that the unique integro cubic spline
exists under the appropriate given end condition and the algorithm of constructing
such a spline leads to solving a tridiagonal system. Approximation properties of the
splines constructed using B-representation are also considered.

2. Preliminaries

Suppose that the interval [a,b] is partitioned by the following k + 1 equally spaced
points:
a=x9g<x1 << Tp_1 < Tk =D, (1)
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such that z; = a+ih, for i = 0,1,...,k with h = (b — a)/k. Assume that the function
values y; = y(z;) are not given but integrals of y = y(x) are known on k intervals
[x;—1, ;] and they are equal to

T

/ y(z)de = I;, i = 1(1)k. (2)

Ti—1

The cubic splines S(x) € C?[a, b] are called integro cubic ones [1], if

Zq Zq

/ S(x)dx = / y(x)de =1;, i=1(1)k. (3)

Ti—1 Ti—1

For simplicity, we will use the notations: y; = y(x;), S; = S(x;), m; = s’ (z;) and
M; = S (z;). If we use a first derivative representation of S(x) € C?[a,b], then it is
easy to show that the conditions (3) lead to

hg(mi_l — mz) + 6h(Si_1 + Sz) =121;, © = 1(1)]67 (4)

h2(mi — mi+1) + 6h(Sz + Si+1) =124, 1= 0(1)k‘ —1. (5)

From (4), (5) and from the well-known consistency relations

3
m;—1 + 4ml + mi+1 = E(SiJrl - Sifl), 1= 1(1)]{} - ]., (6)
it follows that [1]
12 .
m;—1 + 10m2 + mi+1 = ﬁ(IiJrl - Iz), 1= 1(1)]{3 —1. (7)

In order to construct the cubic spline S using Eq. (7) and solve them for k41 unknowns
mg, ma, ..., mg, we need (as usual) two additional equations. Suppose that y'(a) = «
and y'(b) = (3 are given. Then by setting mg = a and my = (3, we can solve easily
the following (k — 1) by (k — 1) linear tridiagonal equations to obtain a unique set of
solutions for mq, mo, ..., mg_1 :

10m1 +me = by — q,
m;—1 + 107712 + mi+1 = bi, 1= 2(1)k — 2, (8)
mg—1 + 10mg = br_1 — 53,
where b; = 12(I;11 — I,). After finding mg, m1, ..., my from (8), we can use (4) or (5)
to compute Sp, S1, ..., Sk. But we need another additional given value for y(a) or y(b).

If the additional (third) end condition yo = y(a) is not given and y(a) is not available,
in [1] it was proposed to use the relations

Sl — So = hmo or Sl — So = hm1 (9)

as an additional equation. However, in this case we lose the order of accuracy of spline,
due to (9).
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If we use a second derivative representation of S(z), then it is easy to show that
the conditions (3) lead to

h3 h
h? h .
—ﬂ(Mz—‘rMH_l)—‘r §(Sz+sz+1) = 1i+1, ZZO(l)k‘— 1. (11)

Unlike the first derivative representation, here, we cannot eliminate S’s between (10),
(11) and the consistency relations

6 )
Mi,1 + 4M7, + Mi+1 = ﬁ(si,1 - QSZ + SiJrl), 1= 1(1)]{3 -1 (12)
to obtain a relation similar to (7) without S’s. So, to construct S(x) using the second
derivative representation with any end conditions, we have to solve a system of linear
equations with a full matrix of order (2k + 2) by (2k + 2). It should be pointed out
that the above mentioned conclusions are the main results of paper [1].

3. Integro cubic spline with B-representation

Now we proceed to use the B-representation of cubic spline S(z) of class C?[a, b].
To do this, the partition of [a, b] is extended to the left and right sides by equally spaced
knots
T3 <X_9<T_92<x, Th <Th41 < Tpt2 < Tk43-

Then we have [2,3]
kt1

S(x) =Y o;B;(x), (13)

j=—1

where Bj(x) is a normalized cubic B-splines with compact support [z;_2,z;42]. The

coefficients of expansion (13) are given by [3]:

hj — hjilmj _ hjhj,1
3 6

o =55+ M; j=0,1,... k. (14)

In case of a uniform partition the formula (14) becomes

h2
aj:ijgMj j:(),l,,k (15)

Also from (13) it follows:
Qi1 + 4o + i

Q1 — Q1
P = ) 17
m 2h (17)
= 20 o
M; = Qi1 ;z + oy 1’ (18)

where 1 =0,1,...,k.
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We will show that the difficulties mentioned above may be overcome by using a
B-representation (13), instead of a second derivative representation. In order to show
that, we rewrite the relations (10) and (11) in term of expansion coefficients «;

h? 2
o1+ oy + E(Miq + M;) = EIZ- i =1(1)k, (19)
h? 2 ,
o + Qg1 + E(MZ + Mi+1) = EIH_l’ 1= 0(1)]€ —1. (20)

By adding (19) and (20), we get

h? 2 _
a1+ 205 + i + E(Mi—l +2M; + M) = E(Ii +1Iip1), i=1(1)k—-1 (21)
or
h? 2 _
Si—1+ 28+ Siqp1 — E(Mz‘—1 +2M; + M) = E(Iz +ILiy1), i=110k-1. (22)
If we use a notation

then it is easy to check that the relations (19) and (20) are equivalent to

di—1+d; = %Ii, i =1(1)k, (24)
and A
di +diy1 = 7 i+1, L= 0(1)]€ -1, (25)

respectively. Adding (24) and (25), we get

4
From (26) it is clear that dy,ds,...,dx—1 are determined by solving this tridiagonal
system, if dg and dj are given. However, instead of solving the tridiagonal system we
can find all d; using the following formulas

. 4 L
di = (~1)'dy + S D)L, =11k (27)
j=1
or
. 4 & L
di = (—1)'d + S (=1L i=k-1,k-2,...,0, (28)
Jj=i+1

that immediately followed from (24) and (25). We now want to show how dy and d
can be find. What was used to find them? To do this we consider a useful identity

-1+ 20 + a1 = 4oy + thi~ (29)
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Using (29) we can rewrite (21) as

h? L+ i
Qi+ o (Mg + 1AM + Mis) = % (30)

" "

Since M, 1+ M,;_1 = 2M; +h(S,, 4 — S;_), then from (30) it immediately follows that

3 h3 nr " .
(T L) — 1= (81— SU0), i= k=1 (31)
The last term in the right-hand side of (31) is small and it can be neglected. As a result

we obtain an approximate formula

ai—1+o; + a1 =

i1+ o+ oy = ( +Iit1), i=1(1)k— 1. (32)

2h

Taking into account (32) for i = 1, we obtain

h? g+ t+as I+ 1
Sy +—M - .
1t = 3 2h
Therefore we have
h2 L+, A2
di = a1 + 81 =251 — My = 122—71\41,

in which we have used (15). From the last formula and (24) we get

4 3, -1, R?
= —I — = —_— —_— .
do 7l dq " + 5 M,y (33)

Analogously we have

3y — Iy h?
dy, = % + 7Mk—1~ (34)

Thus the quantities dy and dj, are determmed by formula (33) and (34), respectively, if
M,y or Mk 1 are known. If M, = y ($1) and My, = y (:Ek 1) are not given or y”(xl)
and y" (x,_1) are not available, we can use simple formulas

3L — I 3l — I
dy = ——; dpy=—"7——. 35
0 " K " (35)
Of course, in this case the approximation order reduces by two.
From (23) it follows that
o1+ 1OCYZ + A1 = 6d2, 1= 0(1)]€ (36)
On the other hand, the relations (24) in term of «; are rewritten as

24

;2 + 116%7;,1 + 11&1 + A1 = FIZ, 1= 1(1)]{3 (37)

From (37) and (32) with ¢ = 1 it follows

3
a_1+ 10ag 4+ 10 = %(1511 — Ig).
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From the last equality and from (36) we obtain

1L -1, 2, L+IL h?

— =d — —M;. 38
o 61 30T Top T 3! (38)
Analogously we find
150, — Iy 2
1= —— — —d. 39
Qf—1 6h 3 k ( )
When dy, dy,...,d; and a1, ap_1 are known the coefficients as, as, . .., ar_o are deter-

mined from the system

10cs + a3 = 6dy — aq
ai—1 + 10c; + a1 = 6d;, i = 3(1)k‘ -3, (40)
op—3 + 10ag_o = 6dp_2 — ap—1,

which follows from (36). After solving the system of linear equations (40) the remainder
coefficients a_1, g and g, a1 will be determined from (36) for ¢ = 0,1 and i =
k — 1,k respectively. Thus, we find all the coefficients a; of B-representation of integro
cubic spline. The values of this spline and its first two derivatives at the knots x; are
determined by formula (16), (17) and (18). The values of integro cubic spline at any
point T € [a, b] different from knots x; are given by

k+1

S(@) = a;B;(@),

j=—1

in which the explicit formula for B;-splines have been used. Thus the construction of
the integro cubic spline to approximate the function y(x) leads to solving the (k — 3)
by (k —3) tridiagonal linear system (40). As mentioned above, when we use the second
derivative representation, the construction of the integro cubic spline require to solve
the system of linear equations with a full matrix of order (2k + 2) by (2k + 2). The
main advantage of our approach is to use of B-representation.

When the first derivative end conditions are given the algorithm of construction
of spline consists of two steps: first, as before, the system of equations (8) is solved.
Once mg,m1, ..., my are known, we can use formula (17) to compute the expansion
coefficients ,i.e,

Qg1 — -1 = thz, 1= 0(1)]{3 (41)
It is easy to show that the linear combination of Eq.(37) with ¢ = 1 and (41) with¢ =0
and ¢ = 1 yields

2 h
g+ o = EflJrg(mO*ml) (42)

On the other hand, from approximate formula (32) with i = 1 and from (41) with ¢ =1
it follows that

3
2000 + a1 = %(Il + .[2) — 2hm;. (43)

As a consequence of (42) and (43), we have

3L—1, h
=— ——(11 44
(7)) o%h 6( m1+m0)7 ( )
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51, — 31 h
= 172 + g(Tflo + 5my). (45)

All other coefficients «; are determined using (41) for ¢ = 1(1)k and a—1 = ag — 2hmy.
Thus, when using B-representation of cubic splines we did not need another third end
conditions, unlike the using first derivative representation in [1].

(€51

4. Approximation properties of integro cubic splines

Now we investigate the approximation properties of integro cubic splines. First
of all, we will derive some useful formulas from (3). We assume y(z) is a six-times
continuously differentiable function on interval [a,b]. Then using the Taylor expansion
of function y(x) at a ;1 we get

(@) = g1+ Yz —wi1) + (@ —zi)*+
y/‘“ 1 y‘(4)1
1371 (z —xi1)® + :, (z —zio1)* +O(h°), x € [xi1, )

4
%:Z Yicl k4 o). (46)

M;_ .
S(x) = Sic1+mi1(r — 1) + Lo —zi1)?+ = 3}+0 (x —miq)
in (3), we get
Ii h h,2 h3 "
—=81+z-mi1+ M1+ —S5;_140 (47)

h 2 3! 41
(x;—1 +0). From (46) and (47) it follows that

11

111
where S; 1,4 =25

h ’ h2 " h3 11 2z 4 .
Si—l_yi—1+§(mi—1_yi—1)+§(Mi—1_yi—l)—i_E(Si—l—&-O_yi ) =0(h?), i = 1(1)k.

Replacing ¢ — 1 by ¢ in the last relation one can rewrite it as:

2 3

h ’ h " h nr "t .
Si— g+ 5 mi —y) + 37 (M — ) + 7 (STLo — y) = O(h") 1= 0(1)k— 1. (48)

Analogously, using Taylor expansion of function y(z) and S(z) at © = z;, we get

h ’ h2 1" h3 " 1"’ 4 .
Si —yi — §(mz —y;) + g(Mz - )= I(Sifo —y; ) =0(h%), i =1(1)k. (49)

By adding and substracting (48) and (49) we get

117 117
S/ = ;

h? o bt 0y — O(ht), i = 1(1)k — 1 (50)

SZ yl+ 6( T yz)+48( h
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and 117 117
’ h2 SZ + SZ* " .
i S (PEZE0 ) — 0, i = 11k - 1. (51)

On the other hand, using Taylor expansion of y(x) € C%[a,b] in (3), one can get

m; —

L N i i

h ’
Li/h=y; — 5Yi + YL + B Vi ayzv +O(h°), (52)
h ! h2 1" h3 1"’ h4 IV h5 V 6
Liv1/h =y + Uit U topY Ty Ty O(h%). (53)
Adding and substracting (52) and (53) we get
I+ iy T o .
—n Vit a¥ by O(h*), i=1(1)k (54)
and ) .
L;Jrl —1; ’ h* h v 5 .
Lty —y, — ) h =1(1)k.
e yit 5¥ tgggu TOM), i=1(1) (55)

In order to derive estimations for Si(r) - yi(r), for r = 0,1, 2,3 we will use the equations

(26) and end conditions
My =y, and My_; =y, ;. (56)

Since dy and d are given by formulas (33) and (34) respectively, the equations (26)
can be rewritten as

2d) +dy = %(11 + I5) — do,
di—1 +2d; + dipy = (I + Liv1), i =2(1)k — 2, (57)
di—2 + 2dj—2 = F(To—1 + Ii,) — di.

If we use a notation
2
1"

0 =205~ yi) — = (M; — ), i = 1)k~ 1 3)

then from (57) it immediately follows that

201 + 03 = c1,

07;,1 + 292 + 07;+1 = G4, 1= 2(1)]{3 - 2, (59)
Or—2 + 20,1 = cp—1,

where
4 h2 " 1"
c1 = E(Il + .[2) — d() — 2(2y1 +y2) + E(?yl + y2),
4 h2 1" 1 1" .
¢ = E(Ii +Liv1) = 2(Yi—1 + 2y + Vi) + F(yi—l +2y; + Y1), i=2(1)k -2,

2

4 h 1" 1"
Ch1 = E(Ik—l + 1) — di, — 22y —1 + Yr—2) + F(kafl + Yp_a)- (60)
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Lemma 4.1 Assume that dy and dj are given by (33) and (34), in which M; and
My defined by (56). If y(z) € C*a, b], then

0; = O(h?), i =1(1)k — 1. (61)

Proof: Using the Taylor expansion of function y(z) € C*(a,b) at a point z; and
(54) we obtain easily
ci = O(h%), i =2(1)k — 2. (62)

By analogy, using (54), (33), (34) and the Taylor expansion of function y(z) at the
points x1; and xi_1, one can easily obtain

c1 = O(h%), c_1 = O(h%). (63)

Since the matrix of the system of linear equations (59) is diagonally dominant, it has
a unique solution (61,6s,...,60k_1). According to (62), (63), the estimation (61) is
fulfilled. O

Lemma 4.2 For d; we have an estimation

h2 "
di =29~ "y O, i = oLk (69
Proof. From Lemma 4.1 and (23), (58) follows the estimation (64) for i = 1(1)k—1.
By virtue of (24) we have

4
do = EII —d;.

Using (64) and (52) for ¢ = 1 in the last equality, we get

h2 7
do = 2yo — 5 Yo +O(h?).

Ji.e., the estimate (64) is proved for i = 0. Analogously using (24) for ¢ = k and (64),
(52) for i = k we obtain (64) for i = k. O
Remark 4.3 More detailed analysis show that

h? »  h*
di = 29 — oyl + ToylV +O(S), i =11k 1 (65)
6 60
provided y(z) € C%[a, b]. We now ready to prove the main result.
Theorem 4.4. Let S(x) be an integro cubic spline to approximate the function
y(z) € C*[a, b], satisfying a given conditions (3) and end conditions (56). Then for the
coefficients of the B-representation of this spline S(x) we have

’ h2 "
a1 =yo — hyy + 3%t O(h"), (66)
h2 1"
o =yi— Y T O(h"), i = 0(1)k, (67)
’ h2 1" 4
apt1 = Yk + hy, + =y, + O(R7). (68)

3
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74
Proof. In section 3 we show that the coefficients of integro cubic spline S are

defined by the system (36), i.e.,
10as + ag = 6dy — aq,

ai—1 + 100; + a1 = 6d;, @ = 3( )k -3,

ap—3 +10ag_o = 6dg_2 — ag_1.

The right-hand side of the last system is defined by (27) and (38), (39). If we use a

h,2 ”
Yy, 1=2(1)k—2 (69)

notation
Wi =0 —Yi + 3

then from the last system it follows that

10wy + w3 = 22,
wi—1 + 10w; +wir1 = 24, © = 3(1)]€ -3, (70)
wi—3 + 10wk _2 = 2k_2,
where
h2 " 1"
2y = 6dy — a1 — 10y2 — y3 + F(% +y3),
2
(71)

h " 7 "
(Yi—1 +10; +y;41), i =3(1)k =3,

zi = 6d; — (yi—1 + 10y; + yip1) + 5
h2

Zk—2 = 6dp—2 — ag—1 — 10yk—2 — yr—3 + E(y}éfz +Yps)-
Using Taylor expansion of function y(z) € C*[a,b] at a point x; and (64) we get
2z =O(hY), i=3(1)k—3.

Analogously using (64), (38) and (39) we have 2o = O(h*), zx_2 = O(h*). Since the
matrix of the system (70) is a diagonally dominant and its solution is estimated by the
right-hand side, that has a O(h*) order. Thus we have

w; = O(hY), i =2(1)k — 2.
Therefore from (69) it follows that (67) for ¢ = 2(1)k — 2. The estimation (67) for i = 1
and i = k — 1 follows from (38) and (39), in which (52), (53) and (64) have been used

for i =0 and i = k. Now we use (36) for i = 1. We have
h2 12
ap = 6dy — 101 — ag = Yo — Eyo + O(h4)7
where have been used (67) for ¢ = 1 and ¢ = 2. Analogously, from (36) for i = k, we
have
h,2 12
ap = 6dg—1 — 1001 — ag—2 = Yi — 5 Yk + O(h?).

Thus (67) is proved for all ¢ = 0(1)k. Analogously, if we use (36) for ¢ = 0, and i = k
and (67) for i = 0,1 and ¢ = k — 1, k, we obtain (66) and (68). This completes the

proof. [J
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Remark 4.5 When y(z) € C%[a, b], using (65), as well as equations (36), we obtain
easily

’ h2 " 19 4 h5 5
= _ h w _ _h4 (4) o (5) O hG 79
a1 =yo —hyo + 40 — moph Yo + g+ (h%), (72)
12 1, gy o
a; = Y; 6 Y, + 720h Yy, + O(h )a 1= O(l)ka (73)
. R2 .19 h?
apy1 = Yr + hy, + Yk %h‘ly;(f) - %y;(f) + O(h%). (74)

Theorem 4.6. Let S(x) be the integro cubic spline satisfying the conditions (3) and
end conditions (56). Then

Si—yi=O("), i=0(1)k, (75)

mi —y; = O(h®), i=0(1)k, (76)

M; —y, =O(h?), i=0(1)k, (77)
% —y, =0(h), i=11)k -1, (78)
Siio—Sig=0(h) i=1(1)k—1. (79)

Proof. By virtue of (16) and (67), we have

1 1
Si = 6(%‘71 +da; + i) = E(yiq + 4y + yig1)—

2

h ” 7 7 .
%(yifl +4y; +yiq) + O(h*) =y + O(n"), i=1(1)k -1,

in which the Taylor expansion of function y(z) is used. Analogously, by using formulas
(66)-(68), one can obtain

1
So = 6(01_1 + 4o + 011)

2 h2 h2

1 ’ h, " " "
= g[yo — hyo + 3+ 4(yo — Fy‘)) +y1 — F%] +O(h') = yo + O(h"),

and

1
Sk = g(akq +day, + ag_1) = yr + O(h?),

respectively. This means that (75) holds for all ¢, ¢ = 0(1)k. From (18) and (67) it
follows 90 + 1
Qit1 — 204 + o

- h; == ﬁ[%q —2Yi + Yit1—

M; =

h2 1" 1" " 1" .
3(91—1 —2y; +4;)] +O(B?) =y, +O(h?), i=1(1)k - 1.
Using (65), (67) and (68) it is easy to verify the estimation (77) for ¢ = 0 and ¢ = k.

1

- . .
Now we consider % Using (77) we obtain

Sito+Si g Mig—M_y 1 "
? ? = = — . _— . O h =
2h 2h Qh(yl+1 yzfl)—"_ ( )




76 ZHANLAV T., MIJIDDORJ R.

]_ 1" 1’ 1" " 11 .
%(yz +hy; —y; +hy; )+Oh) =y, +0(h), i=1(1)k-1,

i.e., the estimation (78) is proven. Analogously, we have

n"r nr MZ+1 - 2MZ Jr M7471
Sito = Si—0 =

U -ty
which completes the proof of Theorem 4.6. [J

5. Numerical examples

In this section, we present results of the numerical experiment to illustrate the
approximation properties of the integro cubic splines. Suppose that y(x) € C*[0,1] and
satisfies the end condition M; = y/(x1), we consider the following test functions

yi(a) =2, ya(r) = cos(mz).

The results are shown in Table 1:
Table 1

1S5 — y1,4l Imj — il |M; — 47
k=10 | k=20 | k=40 | k=10 | k=20 k =40 k=10 k=20 | k=140
1.62E-4 | 1.01E-5 | 6.31E-7 | 8.08E-3 | 1.01E-3 | 1.26E-04 | 2.18E-01 | 5.45E-2 | 1.36E-2
2.00E-5 | 1.03E-7 | 1.30E-8 | 8.17E-4 | 1.03E-5 | 1.32E-08 | 5.55E-17 | 5.51E-3 | 1.25E-3
1.65E-6 | 2.07E-7 | 1.30E-8 | 8.25E-5 | 1.05E-7 | 1.37E-12 | 2.20E-02 | 5.01E-3 | 1.25E-3
3.50E-6 | 2.08E-7 | 1.30E-8 | 8.33E-6 | 1.07E-9 | 6.94E-16 | 1.98E-02 | 5.00E-3 | 1.25E-3
3.32E-6 | 2.08E-7 | 1.30E-8 | 8.33E-7 | 1.10E-1 |1.78E-15 | 2.00E-02 | 5.00E-3 | 1.25E-3
3.34E-6 | 2.08E-7 | 1.30E-8 | 1.11E-6 | 2.55E-5 | 1.89E-14 | 2.00E-02 | 5.00E-3 | 1.25E-3
3.32E-6 | 2.08E-7 | 1.30E-8 | 8.33E-7 | 1.10E-1 | 5.55E-15 | 2.00E-02 | 5.00E-3 | 1.25E-3
3.50E-6 | 2.08E-7 | 1.30E-8 | 8.33E-6 | 1.07E-9 [4.91E-14 | 1.98E-02 | 5.00E-3 | 1.25E-3
1.65E-6 | 2.07E-7 | 1.30E-8 | 8.25E-5 | 1.05E-7 | 1.56E-12 | 2.20E-02 | 5.01E-3 | 1.25E-3
2.00E-5 | 1.03E-7 | 1.30E-8 | 8.17E-4 | 1.03E-5 | 1.32E-08 | 3.93E-13 | 5.51E-3 | 1.25E-3
1.62E-4 | 1.01E-5 | 6.31E-7 | 8.08E-3 | 1.01E-3 | 1.26E-04 | 2.18E-01 | 5.45E-2 | 1.36E-2
1S5 — 2, lmj —ya |M; —y3;
k=10 | k=20 k=40 k=10 | k=20 | k=40 k=10 k=20 | k=140
6.21E-4 | 4.05E-5 | 2.55E-06 | 3.11E-2 | 4.05E-3 | 5.11E-4 | 8.44E-01 | 2.19E-1 | 5.51E-2
7.70E-5 | 3.97E-7 | 5.02E-08 | 3.10E-3 | 4.38E-5| 2.07E-7 | 2.31E-14 | 2.14E-2 | 4.83E-3
5.33E-6 | 6.94E-7 | 4.30E-08 | 3.93E-4 | 5.11E-6 | 2.93E-7 | 7.44E-02 | 1.65E-2 | 4.11E-3
8.41E-6 | 5.09E-7 | 3.13E-08 | 7.15E-5 | 6.46E-6 | 4.03E-7 | 4.66E-02 | 1.20E-2 | 2.99E-3
4.74E-6 | 2.71E-7 | 1.65E-08 | 1.25E-4 | 7.59E-6 | 4.74E-7 | 2.59E-02 | 6.32E-3 | 1.57E-3
4.80E-7 | 7.74E-9 | 1.22E-10 | 1.27E-4 | 7.98E-6 | 4.98E-7 | 5.76E-04 | 3.72E-5 | 2.34E-6
3.78E-6 | 2.56E-7 | 1.62E-08 | 1.25E-4 | 7.59E-6 | 4.74E-7 | 2.47E-02 | 6.24E-3 | 1.57E-3
9.37E-6 | 4.94E-7 | 3.10E-08 | 7.13E-5 | 6.46E-6 | 4.03E-7 |4.77E-02 | 1.19E-2 | 2.98E-3
4.34E-6 | 6.78E-7 | 4.27E-08 | 3.94E-4 | 5.11E-6 | 2.93E-7 | 7.32E-02 | 1.64E-2 | 4.10E-3
7.83E-5 | 3.81E-7 | 5.00E-08 | 3.12E-3 | 4.38E-5| 2.07E-7 | 7.68E-04 | 2.13E-2 | 4.83E-3
6.25E-4 | 4.05E-5 | 2.56E-06 | 3.13E-2 | 4.05E-3| 5.11E-4 | 8.47E-01 | 2.19E-1 | 5.51E-2

8
<.

—~ 0N TR W= oS

8
<.

— N TR W= oS

As shown in Table 1, the approximation properties of integro cubic splines was
confirmed by numerical experiments.
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