УДК 544.16:544.18:547.304.2

КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ МОЛЕКУЛЯРНОЙ СТРУКТУРЫ КАТИОНОВ ТЕТРАМЕТИЛАММОНИЯ, ФЕНИЛТРИМЕТИЛАММОНИЯ, БЕНЗИЛТРИМЕТИЛАММОНИЯ И 1-МЕТИЛПИРИДИНИЯ

Н.И. Белоцерковец

Тверской государственный университет Кафедра физической химии

Представлены результаты неэмпирических квантово-химических расчетов геометрических параметров, полной энергии, парциальных зарядов атомов, дипольных моментов, энергии граничных молекулярных орбиталей ряда катионов, входящих в состав ионных жидкостей: тетраметиламмония, фенилтриметиламмония, бензилтриметиламмония и 1-метилпиридиния в рамках теории возмущений Меллера–Плессе второго порядка в едином приближении MP2/6-31G(d, p).

Ключевые слова: ионные жидкости, молекулярная структура, 1метилпиридиний, тетраметиламмоний, фенилтриметиламмоний, бензилтриметил-аммоний, полная энергия, парциальные заряды атомов, дипольный момент, B3MO, HCMO, неэмпирические методы расчета.

Соли азотсодержащих четвертичных катионов с метильными группами широко исследуются в качестве ионных жидкостей [1–3]. Структура катиона существенно влияет на свойства ионных жидкостей и определяет возможности их использования. Опубликованные результаты квантово-химических расчетов электронной структуры N-метилзамещенных катионов ионных жидкостей немногочисленны и часто трудно сопоставимы, так как получены разными методами. Известные данные относятся, в основном, к производным 3-метилимидазолия [3–5], к катиону тетраметиламмония [1; 2; 6] и 1-метилпиридиния [7–10].

В настоящей работе с целью систематического изучения взаимосвязи структуры и свойств четвертичных азотсодержащих соединений проведены оптимизация геометрии, расчет полной энергии, дипольных моментов, парциальных зарядов атомов, гармонических частот колебаний катионов тетраметиламмония (Me₃N+), фенилтриметиламмония (Me₃NPh+), бензилтриметиламмония (Me₃N(CH₂Ph)+) и 1-метилпиридиния (1-MePy+) в рамках теории возмущения Меллера–Плессе второго порядка в едином приближении

MP2/6-31G(d, p). Структура исследованных катионов и нумерация атомов показаны на рисунке.

Структура и нумерация атомов в исследованных катионах

Методы расчета. Расчеты энергии и полная оптимизация геометрии всех изученных изолированных структур в основном состоянии в вакууме проводилась с помощью программного комплекса Firefly (PC GAMESS) версия 7.1.G [11] в рамках теории возмущения Меллера-Плессе второго порядка в валентно-расщепленном базисе 6-31G, расширенном поляризационными d-функциями для неводородных атомов и р-функциями для атомов водорода (приближениие МР2/6-31G(d, p). Процедура самосогласования проводилась ограниченным методом Хартри-Фока (RHF). По достижении самосогласованного решения программа рассчитывает энергетические и физические характеристики молекулярной системы. Соответствие найденных геометрических параметров локальному минимуму на поверхности подтверждалось потенциальной энергии расчетом частот гармонических колебаний на том же вычислительном уровне и отсутствием мнимых частот. Визуализация результатов расчетов проводилась с помощью программы Chemcraft [12].

Результаты и их обсуждение. Структурные параметры исследованных в данной работе катионов, отвечающие локальному минимуму на ППЭ, представлены в табл.1.

В метильных группах рассматриваемых катионов межъядерные расстояния практически одинаковы для СН-связей и незначительно отклоняются от 1.500 Å в случае СN-связей. В катионе 1– метилпиридиния 1-МеРу+ [10] межъядерные расстояния N-С(метил)

короче на 0.020–0.025 Å, чем в других катионах. Валентные углы СNC практически равны тетраэдрическому, но в катионе фенилтриметиламмония уменьшаются до 107.6 град. Валентные углы NCH в метильных группах у атома азота одинаковы во всех рассматриваемых катионах. В катионе фенилтриметиламмония Me₃NPh+ атомы азота, углерода C17 и водорода H18 одной из метильных групп лежат в плоскости бензольного кольца.

В катионе бензилтирметиламмония Me₃N(CH₂Ph)+ атом азота расположен над бензольным кольцом в плоскости, перпендикулярной плоскости бензольного кольца и проходящей через атомы C2 (α-метиленовая группа) и C5 (бензольное кольцо). Угол вращения по связи C5-C2 составляет 91.5 град. Углерод C24 одной из метильных групп данного катиона находится в транс-положении по отношению к бензольному кольцу.

Особое место занимает метиленовая α -CH₂-группа катиона бензилтриметиламмония: атом углерода α -C2 практически находится в плоскости бензольного кольца; межъядерные расстояния α -C-N (1.536 Å) и α -C-H (1.090 Å) длиннее, а валентные углы α -HCH и α -NCH на несколько градусов меньше, чем в метильных группах рассматриваемых катионов.

Для катионов 1-метилпиридиния, фенилтриметиламмония, бензилтриметиламмония, имеющих ароматическую структуру, межъядерные расстояния в ароматическом цикле практически одинаковы и составляют 1.39-1.40 Å для СС-связей и 1.079-1.082 Å для СН-связей. На величину валентных углов в ароматическом цикле влияет близость атома азота, а именно в катионах 1-метилпиридиния и фенилтримтиламмония наблюдаются отклонения от 120° для углов ССС в пределах 1° и для углов ССН в пределах 1–3°. Ароматические *орто-Н* атомы играют важную роль во взаимодействии рассматриваемых катионов с анионами [13]. В катионах 1-метилпиридиния и фенилтриметиламмония орто-водородные атомы лежат в плоскости ароматического кольца, но в случае бензилтриметиламмония атомы H11 и H12 заметно (на 3-4°) выходят из плоскости бензольного кольца.

Распределение *парциальных атомных зарядов* по Малликену существенно зависит от структуры катиона и, прежде всего, от наличия ароматического цикла и его удаленности от атома азота (табл. 2). Во всех исследованных нами катионах *положительный* заряд сосредоточен на всех атомах водорода, а также на орто-углеродных (С3, С5) атомах пиридиниевого цикла и углеродных атомах бензольного кольца, связанных с азотсодержащим заместителем (атом С2 в катионе фенилтриметиламмония и атом С5 в катионе бензилтриметиламмония). Положительный заряд атомов водорода максимален в катионе 1-метилпиридиния и уменьшается в ряду катионов:

$1 \text{-} MePy + > Me_3NPh + > Me_3N(CH_2Ph) + > Me_3N +.$

Таблица 1

Параметр		Катионы							
(атомы)	1-MePy+	Me ₃ NPh+	Me ₃ N(CH ₂ Ph)+	Me ₃ N+					
	[10]								
Ароматический цикл:									
r _{CC}	1.387-1.395	1.394–1.398 1.394–1.403		-					
r _{CC(5-2)}	_	_	1.494	-					
r _{CH}	1.080-1.081	1.079-1.081	1.082-1.084	-					
r _{cn}	1.354	1.500	-	-					
A _{CCC}	119.0-119.6	118.7–121.2	119.5-120.2	-					
A _{CCH}	120.5-123.4	118.7-122.0	119.7-120.1	_					
A _{CCN}	120.2	117.5-121.3	_	-					
A _{CNC}	121.4	_	_	-					
ANCH	116.5	_	—	-					
d _{CCNC-METHE}	±178.0	±119.9;	—	-					
cerve-mernin		-0.19 (C17)							
Углеводородный заместитель (группы CH3-, -CH ₂ -):									
r _{NC(CH3)}	1.483	1.502-1.507	1.497–1.499	1.500					
r _{CH(CH3)}	1.084-1.086	1.083-1.087	1.084-1.086	1.086					
r _{NC(-CH2)}	_	_	1.536	_					
r _{CH(-CH2)}	_	_	1.090-1.091	_					
A _{CNC(CH3)}	_	107.6-109.9	109.2	109.5					
А _{СNC} (други	$119.2_{(3-4-12)}$	$109.5_{(2-1-13)};$	(-CH2-N-CH3)	_					
e)		$112.7_{(2-1-17)}$	108.2-110.5						
A _{CCN(5-2-1)}	_	-	114.1	_					
A _{NCH(CH3)}	108.6–108.8	107.4–108.0 108.2–108.8		108.6					
A _{HCH} (CH3)	109.6-110.5	110.0-111.1	110.2-110.8	110.3					
AHCH(CH2)	_	_	108.7	_					
$A_{\rm NCH(CH2)}$	_	_	105.0-105.1	_					
dCNCH(CH3)		±(176–178);	±(179–180);	180;					
-enem(ens)	_	55–64;	59–61;	±60					
		-(59-65)	-(6061)						
			d						
d	89.5 ₍₃₋₄₋₁₂₋₁₃₎ ;	$\pm(178-180);$	С(а) NCH (метил)	-					
с(арил) NCH-	$-31,0_{(3-4-12-15)};$	58–61;	±(178–180);						
(метип)	-150.1 (3-4-12-14)	-(60-62)	58–60;						
(1	–(<u>)</u> X–(1)						

Межъядерные расстояния (**r**, Å), валентные (**A**, град.) и двугранные углы (**d**, град.) в катионах в приближении MP2/6-31G(d, p)

Вестник ТвГУ. Серия "Химия". 2015. № 4.

Особенно заметно уменьшение положительного заряда атомов водорода в ароматических циклах (табл. 2). В целом, в ароматических циклах рассматриваемых катионов (за исключением катиона 1метилпиридиния) положительный заряд водородных атомов меньше, чем в метильных группах.

Таблица 2

	Заряд атома, а.е.						
Катион	Ν	Н(арил)	С(арил)	С(метил)	Н(метил)		
					. ,		
Me ₃ N+	-0.441	-	-	-0.209	0.190		
1-MePy+	-0.428	0.216-0.220	+0.144 орто	-0.218	0.192;		
		0.221 орто	-0.134 мета		0.210 (H13)		
			-0.064 пара				
Me ₃ NPh+	-0.507	0.176-0.178	+0.194 (C2)	-0.201	0.180;		
			-0.126 орто С4	(C13,C21)	0.184; 0.194		
		0.155 орто	-0.131 орто СЗ				
		H9	-0.119 (C6)	-0.215			
			-0.127 (C5)	(C17)			
		0.164 орто	-0,098 пара				
		H8	_				
Me ₃ N(CH ₂ Ph)+	-0.437	0.165-0.167	+0.002 (C5)	-(0.204–	0.177;		
		0.139 орто	-0.131 орто	0.208)	0.184;		
		-	-0.114 мета	-0.146	0.194;		
			-0.109 пара	(сн ₂)	0.184(сн ₂)		

Парциальные атомные заряды по Малликену катионов в приближении MP2/6-31G(d, p)

Отрицательные заряды по Малликену сосредоточены на атомах азота и углерода исследованных катионов (табл. 2). Атомы азота имеют максимальный отрицательный заряд (от -0,428 до -0,507 а.е.), величина которого зависит от структуры катиона и уменьшается в ряду

 $Me_3NPh + > Me_3N + > Me_3N(CH_2Ph) + > 1-MePy +$.

Такая зависимость согласуется с уменьшением межъядерных расстояний N-C(метил) в данных катионах (табл. 1). Отрицательный *заряд атомов углерода* уменьшается в том же ряду катионов, что и положительный заряд атомов водорода:

$$1-MePy+ > Me_3NPh+ > Me_3N(CH_2Ph)+ \approx Me_3N+.$$

При этом заряд ароматических атомов углерода существенно меньше, чем алифатических. Среди ароматических атомов углерода

наименьший отрицательный заряд имеют атомы С в пара-положении (от -0.064 до -0.109 а.е.), а наибольший – атомы С в орто-положении (от -0.126 до -0. 131 а.е.), за исключением катиона 1-метилпиридиния, в котором орто-углеродные атомы имеют положительный заряд.

Среди алифатических углеродных атомов рассматриваемых катионов минимальный отрицательный заряд (-0.146 а.е.) имеет атом C2 α-метиленовой группы катиона бензилтриметиламмония, а максимальный отрицательный заряд (-0.215÷0,218 а.е.) сосредоточен на углеродах метильной группы катиона 1-метилпиридиния (атом C12) и одной из метильных групп катиона фенилтриметиламмония (атом C17, лежащий в плоскости бензольного кольца).

Наиболее чувствительны к изменению структуры катиона атомы азота, а также орто-углеродные и орто-водородные атомы ароматического кольца.

Величина дипольного момента μ сильно меняется в исследуемом ряду катионов (табл. 3). Наиболее полярным ($\mu \approx 16$ D) является катион бензилтриметиламмония Me₃N(CH₂Ph)+.

Энергетические характеристики исследованных структур представлены в табл. 3.

Таблица 3

Полная энергия (E _{tot}), энергия граничных орбиталей (E _{взмо} , E _{нсмо}),
энергетическая щель $\Delta \epsilon$ и дипольные моменты (μ)
катионов (приближение MP2/6-31G(d, p))

Катион	-E _{total} , a.e.	-Е _{взмо} ,	E _{HCMO} ,	$\Delta \epsilon, eV$	μ, D
	totul	eV	eV		
Me ₄ N+	213.468551	19.65	0.33	19.976	0
1-MePy+	287.080449	14.82	-2.82	12.000	5.76
Me ₃ NPh+	404.616004	13.11	-0.43	12.675	8.19
Me ₃ N(CH ₂ Ph)+	443.810762	12.55	-0.30	12.251	15.81

Энергия и состав граничных молекулярных орбиталей ВЗМО и НСМО имеют важное значение для оценки реакционной способности, сил межмолекулярного взаимодействия и физических свойств веществ. Полученные нами результаты показывают, что энергия ВЗМО и НСМО заметно зависит от структуры исследованных катионов (табл. 3). Основной вклад в состав ВЗМО вносят р-орбитали атома азота в случае катиона тетраметиламмония и р-орбитали атомов углерода в *орто-* и *мета*-положениях ароматического кольца в случае других катионов. Структура НСМО более сложна и различна для исследованных катионов.

На основании вышеизложенного можно сделать следующие выводы. В едином приближении MP2/6-31G(d, p) для катионов 1-метилпиридиния, фенилтриметиламония тетраметиламмония, И бензилтриметиламмония в устойчивом конформационном состоянии рассчитаны геометрические и энергетические параметры, парциальные атомные заряды по Малликену, дипольные моменты, частоты гармонических колебаний. Обсуждено влияние различий в структуре на ИХ геометрические параметры. Установлено, катиона ЧТО распределение парциальных атомных зарядов существенно зависит от структуры катиона и, прежде всего, от наличия ароматического цикла и его удаленности от атома азота. Наиболее чувствительны к изменению структуры катиона атомы азота, а также орто-углеродные и ортоводородные атомы ароматического кольца. Величина дипольного момента µ сильно меняется в исследуемом ряду катионов. Наиболее полярным является катион бензилтриметиламмония.

Список литературы

- 1. Lopes J.N.C., Padua A.A.H. // J. Phys. Chem. B. 2004. V. 108. P. 16893.
- 2. Lopes J.N.C., Padua A.A.H. // J. Phys. Chem. B. 2006. V. 110. P. 19586.
- Hu Y.-F., Liu Z.-C., Xu C.-M., Zhang X.M. // Chem. Soc. Rev. 2011. V. 40. P. 3802.
- 4. Eudo T., Kato T., Tozaki K., Nishikawa K. // J. Phys. Chem. B. 2010. V. 114. P. 407.
- 5. Umebayashi Y., Hamano H., Tsuzuki S. et al. // J. Phys. Chem. B. 2010. V. 114. P. 11715.
- 1. Felder Ch., Jiang H.-L., Zhu W.-L. et al. // J. Phys. Chem. A 2001. V. 105. P. 1326.
- Scott R.H., Whyment A.D., Foster A. et al. // J. Membrane Biol. 2000. V. 176. P. 119.
- Сашина Е.С., Каширский Д.А., Мартынова Е.В. // Журн. общ. химии. 2012. Т. 82, № 4. С. 643. [Sashina E.S., Kashirskii D.A., Martynova E.V. //Russ. J Gen. Chem. 2012. V. 82, № 4. Р. 729.].
- 4. Blażejowski J., Krzymiński K., Storoniak P., Rak J. // J. Therm. Anal. Cal. 2000. V. 60. P. 927.
- Белоцерковец Н.И., Никольский В.М. // Журнал структурной химии. 2014. Т. 55, № 2. С. 230–236. [Belotserkovets N.I., Nikol'skii V.M. // Russian Journal of Structural Chemistry. 2014. V. 55, № 2. Р. 210–216. DOI: 10.1134/S0022476614020036].
- 6. Granovsky A.A. URL: <u>http://classic.chem.msu.su/gran/gamess/index.html</u>.
- 7. Zhurko G., Zhurko D.URL: http://www.chemcraftprog.com.
- Wang X.-L., Wan H., Guan G.-F. // Acta Phys.-Chim. Sin. 2008. V. 24, № 11. P. 2077.

QUANTUM CHEMICAL CALCULATIONS OF THE MOLECULAR STRUCTURE OF TETRAMETHYL AMMONIUM, PHENYL TRIMETHYL AMMONIUM, BENZYL TRIMETHYL AMMONIUM AND 1-METHYL PYRIDINIUM CATIONS

N.I. Belotserkovets

Tver State University Department of Physical Chemistry

The results of non-empirical quantum chemical calculations of geometric parameters, total energies, partial atomic charges, dipole moments, energies of frontier molecular orbitals obtained within second order Moeller–Plesset perturbation theory in the same MP2/6-31G(d, p) approximation are presented for a number of cations of Ionic Liquids: tetramethylammonium, phenyl trimethyl ammonium, benzyl trimethyl ammonium, and 1-methyl pyridinium cations.

Keywords: ionic liquids, molecular structure, tetramethylammonium, phenyl trimethyl ammonium, benzyl trimethyl ammonium, 1-methyl pyridinium cation, geometry optimization, total energy, partial atomic charges, dipole moment, frontier molecular orbitals, non-empirical quantum chemical calculations.

об авторе:

БЕЛОЦЕРКОВЕЦ Нина Ивановна – доцент, кандидат химических наук, доцент кафедры физической химии Тверского государственного университета, e-mail: <u>n-belotserkovets@mail.ru</u>.