ФИЗИКА МАГНИТНЫХ ЯВЛЕНИЙ

УДК 538.221

МАГНИТНЫЕ СВОЙСТВА СОЕДИНЕНИЙ R-Fe-Ti (R=Y, Dy, Tb) В ОБЛАСТИ ГОМОГЕННОСТИ

А.Г. Грушичев, А.Г. Хохолков Кафедра магнетизма

Проведены структурные и магнитные исследования соединений R-Fe-Ti (R=Y, Dy, Tb). Определена область гомогенности фазы со структурой ThMn₁₂, температуры Кюри и параметры кристаллической решетки в зависимости от содержания Fe и Ti.

Системы R-Fe-Ti (где R - редкоземельный элемент) представляют особый интерес для исследования фундаментальных свойств магнетиков, так как включают ряд соединений, которые, во-первых, характеризуются высокой магнитокристаллической анизотропией и удельной намагниченностью, и, вовторых, в них реализуются спин-переориентационные фазовые переходы и процессы намагничивания первого рода (FOMP).

В системе Nd-Fe-Ti было впервые обнаружено новое соединение R₃(Fe,Ti)₂₉, имеющее по данным работ [1-3] моноклинную структуру. В связи с этим активно ведется поиск данного соединения с другими рекоземельными металлами (P3M).

Проведённый ранее анализ микроструктуры и фазового состава сплавов Gd-Fe-Ti не выявил наличие в них фазы 3:29 с моноклинной структурой [4; 5]. В данной работе проводится дальнейшее изучение составов с подобной стехиометрией с другими P3M (Y, Dy, Tb).

Рис. 1. Микроструктура сплавов $Y_3Fe_{29-x}Ti_x$ (x = 1...5)

Металлографический анализ серии сплавов $Y_3Fe_{29-x}Ti_x$ (x от 0 до 5) показал наличие в них двух фаз (как и в сплавах с Gd). Наименьшее содержание второй фазы (менее 3 %) обнаружено в сплаве $Y_3Fe_{26}Ti_3$. Фотографии микроструктуры всей серии сплавов после химического травления представлены на рис. 1.

Рис. 2. Температурная зависимость дифференциальной магнитной восприимчивости χ сплавов $Y_3Fe_{29-x}Ti_x$ и зависимость T_c от содержания железа

На рис. 2 представлена температурная зависимость дифференциальной магнитной восприимчивости χ для семи образцов $Y_3Fe_{29-x}Ti_x$ и зависимость температуры Кюри T_c от концентрации железа в исходной шихте. Полученные данные подтверждают наличие двух фаз в рассматриваемых сплавах, о чем свидетельствует наличие двух максимумов на зависимостях $\chi(T)$. Исключение составляет образец $Y_3Fe_{26}Ti_3$, на температурной зависимости восприимчивости которого присутствует только один максимум. Характер пика типичен для материалов с анизотропией «легкая ось».

Были проведены наблюдения магнитной доменной структуры (ДС) образцов Y₃Fe₂₆Ti₃ методами полярного эффекта Керра и Акулова-Биттера (рис. 3). ДС исследуемых образцов типична для соединений с одноосной магнитной анизотропией, что согласуется с приведёнными выше данными термомагнитного анализа (ТМА).

Рис. 3. Доменная структура поликристалла Y₃Fe₂₆Ti₃, выявленная методами полярного эффекта Керра (а) и Акулова-Биттера (б)

Для определения области гомогенности были синтезированы сплавы $Y_3Fe_xTi_3$ (значение *x* изменялось от 24 до 33 с шагом 1). Анализ микроструктуры показал, что несмотря на снижение содержания железа, практически во всем интервале составов в сплавах присутствует только одна фаза. Вторая фаза (предположительно 2:17) наблюдается только в составах $Y_3Fe_{33}Ti_3$ и $Y_3Fe_{24}Ti_3$. На рис. 4 представлены микрофотографии доменной структуры образцов этой серии, из которых видно, что зарождение второй фазы происходит в межзеренных границах основной матричной фазы.

На зависимостях $\chi(T)$ присутствует один максимум, а при высоких содержаниях железа выявляется фаза с $T_{\rm C}$, соответствующей соединению 2:17 (рис. 5).

Для определения типа структуры основной фазы проводился рентгеновский анализ. Было установлено соответствие всех сплавов серии структуре ThMn₁₂. Также были рассчитаны параметры решетки *а* и *с* и рентгеновская плотность (рис. 7 и 8).

Рис. 4. Доменная структура поликристаллов $Y_3Fe_{33}Ti_3$ (а) и $Y_3Fe_{24}Ti_3$ (б), выявленная методом полярного эффекта Керра

Рис. 5. Температурная зависимость дифференциальной магнитной восприимчивости χ сплавов $Y_3Fe_xTi_3$ и зависимость T_c от содержания железа

Вестник ТвГУ. Серия "Физика". 2004. № 4(6)

Видно, что с увеличением концентрации железа в сплавах параметр c кристаллической решетки изменяется незначительно, а параметр a монотонно уменьшается. Плотность увеличивается с увеличением x. Это связано с не полностью занятыми узлами в кристаллической решетке. Наличие вакантных мест позволяет использовать эти материалы в качестве накопителей водорода.

Рис. 7. Концентрационные зависимости параметров решетки a и c сплавов $Y_3Fe_xTi_3$

Рис. 8. Концентрационные зависимости гидростатической и рентгеновской плотностей сплавов Y₃Fe_xTi₃

На следующем этапе работы были синтезированы сплавы состава $R_3Fe_{26}Ti_3$, где R = Ho, Dy, Tb, Er, из которых по оригинальной технологии были выращены монокристаллы массой до 12 мг.

Рис. 9. ДС на базисной плоскости монокристалла Dy₃Fe₂₆Ti₃

Рис. 10. ДС образца Tb₃Fe₂₆Ti₃

При наблюдениях ДС на базисной плоскости монокристаллов Dy₃Fe₂₆Ti₃ с помощью полярного эффекта Керра были выявлены области с "размытыми" изображениями ДС с ослабленным контрастом (рис. 9). Особый интерес представляет наблюдение ДС в соединении Tb₃Fe₂₆Ti₃, которое при комнатной

температуре обладает типом магнитокристаллической анизотропии «легкая плоскость» (рис. 10). Видно, что на поверхности шлифа так же, как и в случае с Dy₃Fe₂₆Ti₃ наблюдаются области с "размытой" ДС. Наличие таких областей было выявлено впервые и их возникновение должно быть исследовано дополнительно. Не исключено, что "размытость" обусловлена высокой локальной коэрцитивностью доменных границ.

Работа выполнена при поддержке грантов Президента РФ (проект НШ-205.2003.2), РФФИ 02-02-16523 и программы Университеты России» (проект УР 01.01.054).

Литература

- 1. Fuerst C.D., Pinkerton F.E., Herbst J.F. On the formation of NdFe_{9,5-x}T_x compounds (T=Ti,Cr,Mn) // J. Magn. Magn. Mater. 1994. V. 129. P. L115.
- Fuguan B., Wang J.L., Tang N., Wang W.A., Wu G.N., Yang F.M. / Formation and magnetic properties of Nd₃Fe_{29-x}Ti_x (x=1.3-2.0) compounds // J. Alloys Compounds. 2001. V. 319. P. 80-84.
- Paoluzi A., Pareti L., Albertini F., Ibarra H.R., Morelon L., Hu Bo-Ping, Wang Y.Z., Courtois P. Magnetocrystalline anisotropy in Re₃(Fe,Ti)₂₉, (Re = Sm, Y) intermetallics // J. Magn. Magn. Mater. 1999. V. 196-197. P. 840-842.
- 4. Грушичев А.Г., Хохолков А.Г., Пастушенков Ю.Г., Скоков К.П., Ляхова М.Б., Семенова Е.М. Структурные магнитные свойства сплавов Gd₃Fe_{29-x}Ti_x (*x*=0,1,2,3) и Gd₃Fe_{34-x}Ti₃ (*x*=0,1,...,8) // Материалы Всерос. школы-семинара «Магнитная анизотропия и гистерезисные свойства редкоземельных сплавов». Тверь, 2003. С. 77-86.
- 5. Skokov K., Grushichev A., Khokholkov A., Pastushenkov Yu., Pankratov N., Ivanova T., Nikitin S. Magnetic properties of Gd₃Fe_xTi₃ (*x*=34, 33, ..., 24), TbFe₁₁Ti and TbFe₁₀Ti single crystals // J. Magn. Magn. Mater. 2004. V. 272-276. P. 374-375.