ВОЗМОЖНОСТЬ ЖИДКОФАЗНОГО ГИДРИРОВАНИЯ АРЕНОВ НА ПЛАТИНОВОМ КАТАЛИЗАТОРЕ, СТАБИЛИЗИРОВАННОМ В АРОМАТИЧЕСКОЙ ПОЛИМЕРНОЙ МАТРИЦЕ

А.В. Забрусская, Д.В. Евдокимова, Г.Н. Демиденко, А.В. Быков

Тверской государственный технический университет, г. Тверь

Рассмотрены результаты каталитического тестирования жидкофазного гидрирования бензола и анилина на платиновом катализаторе, стабилизированном в ароматической стирол-дивинилбензольной матрице. Показана высокая стабильность каталитической системы и селективность реакции с ее участием.

Ключевые слова: платина, полимерстабилизированный катализатор, жидкофазное гидрирование.

Реакции восстановления ароматического ядра находят широкое применение в современной химической промышленности. Так, продукт восстановления анилина циклогексиламин И его производные применяют синтезе мономеров, ускорителей вулканизации, ингибиторов коррозии металлов в качестве инсектицидов и используют синтезах фармацевтических субстанций [1-3].восстановления бензола циклогексан находит применение в синтезе капролактама, и широко используется в качестве растворителя. Для обоих процессов реализованы как газофазный, так и жидкофазный если процесс гидрирования бензола изомеризацией продукта в метилциклопентан на оксидных и цеолитных носителях каталитических систем, то в случае восстановления анилина до циклогексиламина образуется значительное количество побочных дициклогексиламин, N-фенилциклогексиламин, продуктов: дифениламин, аммиак, а при высоких температурах циклогексан и бензол [4], при этом условия синтеза сильно варьируются в зависимости от применяемой каталитической системы [4-7]. Для подавления таких процессов нами предлагается каталитическая система на основе платины, стабилизированной промышленном стиролдивинилбензольном полимере марки MN270, а целью исследования является установление возможности и перспективности использования таких систем в указанных реакциях.

Каталитическая система 1%Pt/MN270 была синтезирована пропиткой порошка полимера по влагоемкости водным раствором платиновой кислоты, после чего катализатор сушили при 70 °C и восстанавливали при 300 °C в токе водорода 100 мл/мин в течение 3 ч.

Каталитическое тестирование 1%Pt/MN270 в выбранных реакциях проводилось в мультиреакторном автоклаве Parr-4871 в среде гексана. В ходе эксперимента 0.1000 г катализатора, 40 мл гексана и выбранное количество субстрата помещали в реактор, который герметизировали и замещали воздушную среду на азотную. По достижении заданной температуры азот замещали водородом, устанавливали выбранное давление и вели реакцию в изобарических условиях. В ходе исследования варьировались такие параметры процесса, как температура и концентрация субстрата.

Для тестирования выбранной системы в реакции гидрирования бензола до циклогексана условия были следующими: T = 210 - 260 °C, C_0 (бензол) = 0.03 - 0.54 моль/л, P = 5 МПа; для тестирования в реакции гидрирования анилина до циклогексиламина и дициклогексиламина: T = 140 - 190 °C, C_0 (анилин) = 0.14 - 0.52 моль/л, P = 2 МПа.

В ходе исследования реакции гидрирования бензола было установлено, что побочных продуктов, возникающих в результате изомеризации циклогексана в метилциклопентан не образуется, а поскольку платина – эффективный катализатор восстановления углерод-углеродных двойных связей, восстановление то промежуточного продукта – циклогексена – происходило настолько быстро, что анализ катализата методом газовой хромато-массспектрометрии его наличия не выявил. Варьирование температуры реакции показало (рис. 1, табл. 1), что приведенная скорость процесса при 20 % конверсии бензола увеличивается при повышении температуры реакции до 230 °C, после чего снижается, что, очевидно, объясняется изменением поведения растворителя вблизи температуры кипения. Зависимость приведенной скорости процесса от начальной концентрации бензола при 230 °C имеет максимум при 0.3 моль(бензол)/л и достигает значения 95.6 моль/моль*мин, а снижение скорости реакции в повторном цикле незначительно (рис. 2).

Таблица 1 Зависимость приведенной скорости гидрирования бензола от температуры

Температура, °С	Скорость, моль(бензол)/моль(Рt)*мин	
210	10.67	
220	18.5	
230	37.1	
240	25.0	
250	13.2	
260	3.5	

Жидкофазное гидрирование бензола без использования растворителя при сохранении остальных условий: 0.1000 г

1%Pt/MN270, 230 °C и 5 МПа позволяет вести процесс с приведенной скоростью 108.9 моль/моль*мин.

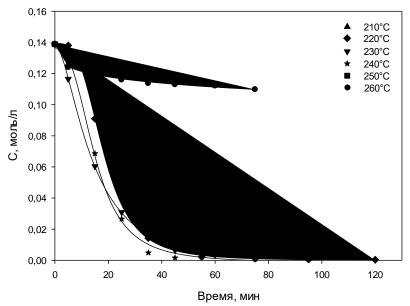
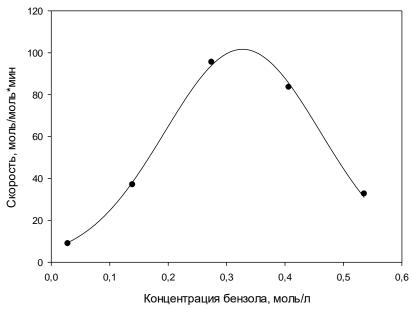



Рис. 1. Кинетические кривые расходования бензола при варьировании температуры реакции

 ${\tt P}\,{\tt u}\,{\tt c}\,.$ Зависимость приведенной скорости гидрирования бензола от концентрации бензола в гексане

Тестирование каталитической системы 1%Pt/MN270 в реакции гидрирования ароматического кольца анилина показало, что в качестве продуктов реакции образуются циклогексиламин, дициклогексиламин,

N-фенилциклогексиламин. С ростом температуры реакции (рис. 3, табл. 2) приведенная скорость процесса увеличивается до 37.1 моль(анилина)/(моль(Pt)*мин) при 170 °С, после чего скорость процесса снижается, в то время как селективность по циклогексиламину непрерывно снижается. Увеличение начальной концентрации субстрата также приводит к понижению селективности по циклогексиламину.

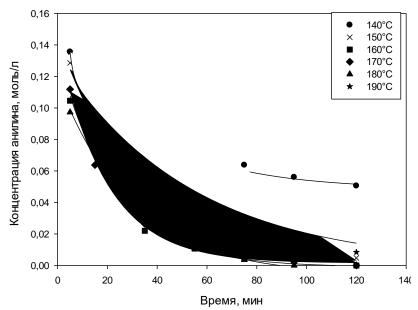


Рис. 3. Кинетические кривые расходования анилина при различных температурах

Таблица 2 Зависимость приведенной скорости и селективности по циклогексиламину при различных температурах процесса

разли ных температурах процесса		
Температура, °С	Скорость,	Селективность, %
	моль(анилин)/(моль(Рt)*мин)	
140	9.1	58.9
150	22.0	66.1
160	33.9	45.1
170	37.1	53.5
180	32.9	41.6
190	14.4	41.6

Для установления стабильности каталитической системы в повторных циклах был проведен повторный эксперимент при идентичных условиях с каталитической системой после эксперимента при условиях: гексан — 40 мл, анилин — 0.14 моль/л, катализатор 1% Pt/MN-270 — 0.1000 г, давление водорода — 2 МПа, температура — 150 °C (рис. 4).

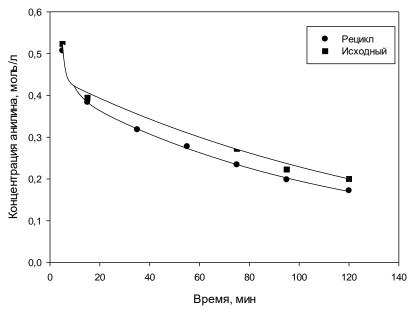


Рис. 4. Кинетические кривые расходования анилина в повторных циклах

Приведенная скорость во втором каталитическом цикле составила 38.3 моль(анилин)/(моль(Pt)*мин), что превышает значение 25.8 моль(анилин)/(моль(Pt)*мин) для первого цикла при сохранении селективности в 66% по циклогексиламину. Увеличение приведенной скорости объясняется доформированием активных центров каталитической системы на начальных этапах реакции.

Таким образом, в работе показано, что процессы восстановления ароматического ядра бензола и анилина могут быть эффективно проведены при использовании предложенной каталитической системы стирол-дивинилбензольной 1%Pt/MN270 на базе ароматической матрицы, а предполагаемых процессов разрушения и деградации каталитической системы основе кинетических на данных исследований в повторных циклах не установлено.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (контракт 16-08-00355).

Список литературы

- Králik M., Turáková M., Mačák I., Wenchich Š. // J. Chem. Chem. Eng. 2012.
 V.6. P. 1074–1082.
- 2. Pexidr V., Pašek J., Dvořák B., Soukup M. CS180353 (B3), Nov 30, 1977.
- 3. Pašek J., Lubojacký J., Pavlas P., Bancír K., Marek, J., Rozínek, R. CS193908 for (B1), Nov 30, 1979.
- 4. Mačák I., Uhlár J., Štefanko, M. ZoD 08/200/Kr/07/10, č. obj. 6110080609, Jun 10. 2011.

- 5. Uhlár J., Mačák I., Štefanko, M., Králik, M., Horák, J., Chovanec, Š. WO2012018310 (A1) for Duslo, Sep 2, 2012.
- 6. Biedermann W., Koller H. US 4,057,513 for BAYER AG, Aug 11, 1977.
- 7. Toman P., Wenchich Š., Uhlár J.// Chemzi. 2011. V.7, № 13. P. 128–129.

POSSIBILITY OF LIQUID-PHASE ARENE HYDROGENATION ON THE PLATINUM STABILIZED IN THE AROMATIC POLYMERIC MATRIX

A.V. Zabrusskaya, D.V. Evdokimova, G.N. Demidenko, A.V. Bykov

Tver State Technical University, Tver

The article describes the results of the catalytic testing of liquid-phase hydrogenation of benzene and aniline on a platinum catalyst, stable in aromatic styrene-divinylbenzene matrix. The high stability and selectivity of the catalytic reaction system with its participation are shown.

Keywords: liquid-phase hydrogenation, the polymer-stabilized catalyst, platinum.

Об авторах:

ЗАБРУССКАЯ Александра Викторовна – студент, Тверской государственный технический университет.

ЕВДОКИМОВА Дарья Владимировна – студент, Тверской государственный технический университет.

ДЕМИДЕНКО Галина Николаевна – кандидат химических наук, доцент кафедры биотехнологии и химии, Тверской государственный технический университет, e-mail: xt345@mail.ru

БЫКОВ Алексей Владимирович – кандидат химических наук, доцент кафедры Биотехнологии и химии, Тверской государственный технический университет, e-mail: BykovAV@yandex.ru