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We find assimpotics for the first k£ highest degrees of the degree distribution
in an evolving tree model combining the local choice and the preferential
attachment. In the considered model, the random graph is constructed in
the following way. At each step, a new vertex is introduced. Then, we
connect it with one (the vertex with the largest degree is chosen) of d
(d > 2) possible neighbors, which are sampled from the set of the existing
vertices with the probability proportional to their degrees. It is known that
the maximum of the degree distribution in this model has linear behavior.
We prove that k-th highest dergee has a sublinear behavior with a power
depends on d. This contrasts sharply with what is seen in the preferential
attachment model without choice, where all highest degrees in the degree
distribution has the same sublinear order. The proof is based on showing
that the considered tree has a persistent hub by comparison with the
standard preferential attachment model, along with martingale arguments.
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1. Introduction

In the present work, we further explore how the addition of choice (see, e.g., [2,7,
11,12]) affects the standart preferential attachment model (see [1,8]). The preferential
attachment graph model is a time-indexed inductively constructed sequence of graphs,
formed in the following way. We start with some initial graph and then on each step
we add a new vertex and an edge between it and one of the old vertices, chosen with
probability proportional to its degree. Many different properties of this model have
been obtained in both the math and physics literature (see [1,3,8,13]).

In the current work, we are interested in the first k£ maximums of the degree
distribution. For the preferential attachment model, this problem is studied in [4].
It is shown in [4] that the & highest degrees A;(n), i € {1,...,k}, at time n satisfy

1/2 1/2 1/2
nooo Ai(n) < g(n)nl/2 and n(— < Ain) <A;_q1(n) — %,
g(n

>i>2,
g(n) ~ g(n)
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with high probability for any function g(n) with g(n) — co as n — occ.

In [12], the limited choice is introduced into the preferential attachment model.
More specifically, at each step we independently (from each other) choose d existing
vertices with a probability proportional to their degrees and connect the new vertex
with the vertex with the smallest degree. In [12], it is shown that the maximal degree
at time n in such a model grows as loglogn/logd with high probability. If instead of a
vertex with the smallest degree we pick one with the highest degree, we would get the
max-choice model that was introduced in [11]. In [11], the exact first-order asymptotics
for the maximal degree in this model was obtained and almost sure convergence of the
appropriately scaled maximal degree was shown. In the current work, we provide such
asymptotics for k highest degrees.

Let us describe the max-choice model. Fix d € N, d > 2. Introduce a countable
non-random set of vertices V = {v;, ¢ € N}. Define a sequence of random trees {P,},
n € N, by the following inductive rule. Let P, be the one-edge tree which consists of
vertices v; and vy and an edge between them. Given P,,, we construct P,,;1 by adding
one vertex and drawing one edge in the following way.

First, we add a vertex v,i2 to P,, hence the vertices set V(P,41) of P,4q is
V(Ppt1) = {vi, i =1,...,n+ 2}. Note that the randomness of P, caused by its edge
set &,. Denote F,, = o{&1,...,E.}. Let X}, ... X4 be i.i.d. vertices of V(P,) chosen
with the conditional probability

degv;(n)

Pr[X, = v|F,] = on

v; € V(Pn),
where degv;(n) is the degree of v; in P, (note that, >~ ~degwv;(n) = 2n).

Second, create a new edge between v,, 12 and Y,,, where Y, is whichever of X}L,...,Xff
has the largest degree. In the case of a tie, choose according to an independent
fair coin toss (this choice will not affect the degree distribution). This model is
called the maz-choice preferential attachment tree model. For any fixed k € N, let
Mi(n) > Ma(n) > ... > My(n) be the degrees of k highest degree vertices at time n (if
there are less then k vertices at time n put My (n) = 1).

Let us formulate our main theorem:

Theorem 1. Forde N, d>2, k€N, k> 1 and any ¢ > 0,

hm P(ncdild/Qfe < Mk(n) < ncdild/2+6) — 1,

n— oo
where ¢ = 1—x*/2, x* is the unique positive solution of the equation 1 —(1—x/2)% =z
in the interval 0 < x < 1.

Our proof is based on the existence of the k-th persistent hub, i.e. a single vertex that
in some finite random time becomes the k-th highest degree vertex for all time after.
Using this, instead of analyzing the k-th highest degree over all vertices we effectively
only need to analyze the degree of just one vertex. The existence of the k-th persistent
hub is stated in the following result.

Proposition 1. There exist random wvariables N; and K;, 1 < | < k, that
are finite almost surely so that at any time n > N, degvk,(n) = M;(n) and
Mi(n) > Ma(n) > ... > Mi(n) > degv;(n) for any i # K, ..., K.
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The purpose of this proposition is to simplify analisys of the dynamics of My (n
Indeed, let Ly (n) be the number of vertices at time n that has degree equal to My (n
The effect of Proposition 1 is that for some random and sufficiently large N < oo,
Li(n) =1 for all n > Ny.

If Mp_1(n) = Mg(n), then Mi(n+ 1) = My(n), cause My_1(n) and My(n) could
not be increased at the same time and we should increase Mj,_1(n) before My(n). If
My—1(n) > My(n), to increase My(n) we need to draw an edge to a vertex with the
degree My (n). Therefore the dynamics of My (n) is given by the formula

).
)-

Mk(n + 1) — Mk(n) = l{dngn+1(n) = Mk(n), Mk_l(n) > Mk(n)}, with

E(Mi(n+1) — Mg(n)|F,) =

d
- (ézm SCOREey ) LMy () > My(m),

where

-1
. 1
cl(n)zl—%;Mi(n), 1<I<k,nelN

Note that ¢(n) > 0 cause the sum of the degrees is 2n. From here, we will reffer to

o N M.(n) Ly (n) \ ¢
ét(n) — (ck(n) - T) as pp k. Note that cause My(n+ 1) — My (n) could only

take values 0 and 1, if My_1(n) > My (n) then p, , equals to the probability to increase
k-th maximal degree at the n-th step conditional on F,.

Before starting the proof, let us describe its structure and main ideas. We will prove
Proposition 1 and Theorem 1 using an induction over k. To do so, we consider them
as independend theorems for each k. For k = 1, the convergence MIT(") — x* almost
surely and the existence of the persistent hub were proven in [11]. We will fix ko > 1
and, using statements of Theorem 1 and Proposition 1 for k < ko (from here we reffer
to them as induction hypothesis), prove them for k& = ky. In Section 2, we prove initial
estimates using Theorem 1 for k& < kg. In Section 3, we use these estimates to prove the
existence of the persistent hub and, so, prove Proposition 1 for & = kq. In Section 4, we
use Proposition 1 along with lemmas from Section 2 to prove Theorem 1 for k = k.

2. Initial estimates

We assume that Theorem 1 and Proposition 1 hold for k£ < kq. In this section, we
obtain an initial estimate on My, (n) along with some technical lemmas.

Recall that ¢ = 1 —2*/2, where x, is the solution of the equation 1— (1 —z/2)? =z
in the interval 0 < x < 1. Define the function

d—1

1 o ,
f(x?y)zizyd ! l(y_$/2)17 $7y€R+-
=0

Note that f(z,y) = M for x # 0. We will need the following estimates.

Lemma 1. f(z,y) <1 for y%= ' <2/d and 0 < z < 2y.
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Proof. f(0,y) = d/2y%! < 1. Since f(x,y) is the decreasing function over z for
0 <z < 2y, we have that f(x,y) < 1 for corresponding . O

Lemma 2. ¢4~ < 2/d.
Proof. Note that 2* =1 — (1 — 2*/2)¢ = 1 — ¢?. Therefore,
d

i1 C 11—z

S I )
¢ ¢  1—x*/2 (1-27)

Now show that 2* > 1 — 1/d. Due to convexity of 1 — (1 —x/2)? on [0, 2], it is enough
to show that 1 — (1 — (1 —1/d)/2)% — (1 —1/d) > 0:

d+1

d
Zd) —1/d— (1/2)*(1 +1/d)* > 0,

1-(1-(1-1/d)/2)* -1 —-1/d)=1/d — <

for d > 2 (could be easily proved by an induction starting with d = 3). O
We will frequently use the following lemma of [5].

Lemma 3. Suppose that a sequence of positive numbers r,, satisfies
«
Tnil = Tn <1+>, n>k
n+x

for fited a« > 0, k > 0 and x. Then r,/n" has a positive limit.
Now, we formulate our initial estimate.

Lemma 4. There is v > 0 (which do not depend on ko) such that, with probability 1,
inf,, Mg, (n)/nY > 0.

Proof. For fixed ng € N, define

(c— 6)d’1

Cnti = Tn— (o= 8T

4n
(-1 = (1 *

> Cna n Z no,
with Cp,, =1 and 0 < ¢ < ¢. By Lemma 3, we have that C’n/n(c"s)dA/4 converges to
a positive limit.

Introduce events

Qro(no) = {Nig—1 < Mo, Cko () > ¢ — 6 Vn > np}.

By the induction hypothesis (Ny,—1 < oo almost surely and éx, (n) — ¢ in probability),
P(Qk,(n0)) = 1 when nyg — co. Introduce Markov moments

Ao (ng) = inf{n > ng : Li(n) > 1 for some k < ko or éx,(n) < ¢ —d}.

Note that A, (ng) = oo on Qp,(ng). Put Ag,(n) = C,/My,(n). We will prove that
Ago(n A Ay (ng)) (where Ay = min(z, y)) is a supermartingale for n > ng. Hence by
Doob’s theorem (Corollary 3, p. 509 of [14]) it converges almost surely to some finite
limit. Therefore, there is a random variable By, ,,,, which is positive on Qx(ng), such
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that M%(n) > Biy.no almost surely for v = (¢ —4)?71/4 and n > ng. Consequently, we

have

P (inf M) o) >P (}lnf Mio(n) O,Qko(no)) = P(Qu, (n0)) — 1.

neN  n? eEN nY

Now prove that Ag,(n A A, (no)) is a supermartingale, which concludes our proof.

Recall that if My ,_1(n) > My,(n) (holds if Ly,—; = 1, in particualr for
ng < n < Mg (no)) then p,k, equals to the probability to increase ko-th maximal
degree at the n-th step conditional on F,. Note that

ks = 2y ) = (exs0) - MWW) > & (n) <1 - MW)) .

2n  2nég, (n)

> (n) <1 - <1 - M’“O(")>2> =&l (n) <Mk°(”) _ My (n))? > -

2néy, (1) néky(n)  (2ncy,(n))?
= & (n) Mk;(n) 4n6k04(22k:(7]gk0 (n) > ¢ (n) 2M:;(n) — &) M,;On(n)

By definition of py, i, , for 1/My,(n + 1) we get
E (1/ My, (n+ 1)|F,) =

. ( 1{Myy (n+1) = My (n) +1} | 1{Mp, (n+1) = My, (n)} ‘ fn> _

Mko (n) +1 Mko (n)
_ (pn,kol{Mkol(n) > Mko(n)} + 1 _pn,kol{MkO*l(nJ > Mko(n)}> _
M, (n) +1 Mi, (n)

(Mo (1) + 1) My, (1)
Therefore, if ng < n < Ag,(no), then

My (n) +1 = pp ko 1 < D ko > <

_ (Mko (n) + 1 = P { Mgy —1(1) > My, (n)}) .

E(1/My,(n+1)|Fy,) = Mkoo(n)(Mko (n)+1) My, (n)

1 Pn kg 1 . 5%;1(71)
< (U avict) < (1 m ) <

< ()

which concludes the proof. O
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3. Persistent hub

We assume that Theorem 1 and Proposition 1 holds for & < kg. In this section, we
prove Proposition 1 for k = kg under this assumption. Our method of the proof bases on
the comparison of our model with the standart preferential attachment model, and we
use the technique of [5] developed for the last one. We divide the proof of Proposition 1
into two parts. First, we prove that degrees of only finite number of vertices could at
some time become k-th maximal. Second, we prove that two vertices could have a k-th
highest degree at the same time only for finite number of time moments.

Let us introduce some notations:

xk(n) = min{i > n : degv, (i) = My (i)},

o0

Ur =3 1{xu(n) < oo},

n=1

¥ ;(n) = ﬁiﬁ{deg v; (1) = degw;(1)}.

Here Uy is the number of vertices (of V') whose degrees were k-th maximal at some
moments, x(n) is the moment it happens for the vertex v,,.

Lemma 5. Uy is finite almost surely.

To prove the lemma, we first need a result (which is stated below) from [11] on a
random walk that describes the evolution of degrees of two vertices in the preferential
attachment model without choices.

Let T, = Tn(no,Apny, Bn,) = (A,,B,) for n > ng be random walks on Z?
started from some point (A,,, B,,) that at time n move one step right or one step
up with the conditional probabilities ﬁ and ﬁ respectively. Also, indroduce
the stoping times m(i,j) = min{n > ng : A, = B,|A,, =i, By, = j} and the function
q(i,5) = P(w(i,j) < o0). Although, the arguments of ¢ and 7 are integers, sometimes
in estimates we will write noninterges in arguments meaning the value of the floor
function of it.

Lemma 4.2 from [11] stated that

Lemma 6. The following inequality holds for any positive integers i and j
P(¢i,j(n) < oo|lFyn) < q(degui(n), degv;(n)).
Let us prove Lemma 5.

Proof. By Lemma 4, we get My(n) > Mn” for some random M > 0 almost surely.
Hence, at time n there are at least k vertices vj,,...,v;, with degrees not less then
Mn” with probability 1. A degree of the vertex v,; could become k-th maximal only
if at some moment 7 > n its degree becomes higher than at least one of the degrees
degv;, (R), ..., degv;, (7). Due to Lemma 6 (as in [11]), we could construct k versions
m(i,5), 1 <1<k, of (i, ), such that

k

H{xr(n+1) < oo} < Zl{z/}imﬂ(n) < oo} <
=1
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k k
< Z 1{m(degv;, (n),1) < o0} < Z 1{m(Mn”,1) < 0} a.s.
=1 =1
Fix C' > 0. Then
Upl{M > C} = i 1{xr(n) < 0}1{M > C} <
co k
Z Z 1{m(Mn?,1) < 0o}1{M > C} < > Y 1{m(Cn",1) < 00}1{M > C} <
n=1 =1 n=11=1

oo k
SZZ {m(Cn”,1) < oo}.
n=11=1
Corollary 15 of [5] gives us the following estimate:

Q)
i

q(i, 1) < for any integer 4

for some polynomial function Q(z). Therefore, the expectations

}E]_{?Tl(Cn'Y’ 1) < OO} = q(C"n’Y’ 1) < @

forms a convergent series, and the last sum is finite almost surely by Borel-Cantelli
Lemma. Since M > 0 with probability 1,

P(Uy < 00) = P({Ux < oo} | J [ J{M > 1/n}) = 1.

neN

O

Now let Ji denote the set of vertices whose degrees become k-th maximal at some
moment. According to Lemma 5, Jj, is finite almost surely. Introduce random moments

G(vi,vj) = inf{n > G_1(vi,v;) :
degv;(n — 1) # degv;(n — 1) and degv;(n) = degv;(n)}, (o(vi,vj) =0,
N (v, v;) = sup{l : §(v;,vj) < 0o},

Ek = Sup{CN (v;,;) (Vir v5)|vi € Ji, v € Ji}

Note that almost sure finitness of £ implies Proposition 1 cause any vertex that become
k-th maximal at any time is in Ji, and an order of degrees of vertices from J does not
change after the moment &;. Thus, to complete the proof of Proposition 1 we need the
following lemma:

Lemma 7. & is finite almost surely.
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Proof. Since Jj, is finite almost surely, it is enough to prove that for any v;,v; € V.
N(v;,v;) is finite almost surely. To do so we will use the random walk T, with
ng = max{s + 1,j + 1}, A,, = degv;(ng), Bn, = degv;j(ng). Let R(no,%,j) be the
number of times n > ng such that A4,, = B, and let ng < p1(¢,7) < p2(i,5) < ... be
moments when either degv; or degv; is changed. Then due to the coupling used in the
proof of Lemma 4.2 from [11] there is version of T', such that min{degv;(py), degv;(pn)}
is dominated by min{A,,B,} for n > ng, which implies N(v;,v;) < R (since
Ap + By, = degvi(py) + deg Uj (Pn))-

It is a standard fact about Pélya urn model that if T,, = (A,, B,,) starts from a
point (a,b), then the fraction A, /(A, + B,) tends in law to a random variable H (a,b)
as n tends to infinity, where H(a,b) has beta probability distribution:

H(a,b) ~ Beta(a,b).

(See, e.g., Theorem 3.2 in [10] or Section 4.2 in [6]). Thus, the limit of A,,/(A, + By)
exists almost surely, and it takes the value 1/2 with probability 0 for any starting
point of the process T. Hence, this fraction can be equal to 1/2 only finitely many
times almost surely, and so R is finite almost surely, which completes the proof. O]

4. Final result

Fix 0 < § < 2/d — ¢?~1 (by Lemma 2, 2/d > ¢¢~1). For any fixed ny > 0, we
introduce the events

Dy (no,d0) ={Li(n) =1, ¢ — 0 < épy(n) < ¢+ 6, My, (n) >n"/ng ¥n > ng Yk < ko},
and the Markov moment
Nio (N0, 0) = inf{n > ng : Ly(n) > lfor somek < ko, or

Cro(n) > ¢+ 6, orégy(n) < c— 9, or My, (n) <n?/ng}.

Note that by the induction assumption for k& < kg, Proposition 1 and Lemma 4 (both
for k = ko) we have that

P(Dko (Tl(), 5)) = P(’]ko (nOa 6) = OO) — las ng — 0.
Now, let prove Theorem 1 for k = kg
Lemma 8. With probability 1, My (n)/n — 0.

Proof. Recall that if My_q(n) > My(n) (in particular, on Dy(n0,d)) then p, x equals
to the conditional probability to increase My(n) conditional on F,. Note that for n
such that ng <n < ny.c,

P = &(n) — (ék(n) _ ZW;(;%)Y _ Mgién) (S &) (ék(n) - A%,S”)) .

=0

Hence, J\ZZ(;) = %f(M’“n(n),ék(n)). From Lemmas 1, 2, it follows that for any small

enought § > 0 there is 8 > 0 so that f(z,y) <1—Fify <c+dfor 0 <z < 2y.
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Consider the expectation:

Dk
My(n)

+1_pn,k:1+

Therefore, for small enough 6 > 0 there is S > 0 such that
EMi(n + D|F,) < (1 + (1 — B8)/n)Mg(n) for ng < n < mng(ng,d). Set
Ag(n) = Mi(n)/Cpi, where Cpy1p = 1+ (1 — 8)/n)Crk, n > ng, Cpyr = 1.

We haVe that
]E<41k‘(n ]‘/\77k LO) 'F)

E (Ak(n—i— 1)

Ap(n)
1{nkouh5)>>n}m:(f¥k:**1';~> + 1ne(no, 8) < n} =

H{n+1<n(ng,d0)} +1{n+1> nk(n076)}’fn> =

C Mp(n+1)
1{ni(no, 8) > m} <k (”

Chri1.k Mi(

1{nk(no,d) > n}w

Thus, Ag(n A ng(ne,d)) is a supermartingale. By Lemma 3, we have that
Cpn.xn~ 178 converges to a positive limit. Therefore, by Doob’s theorem we have that
Ag(n Ank(ng,d)) tends to a finite limit with probability 1, and, in particular, there is
a random constant By > 0 so that Mj(n A n(ng,8)) < Brn'~? almost surely. Thus,
My (n Ang(no,d))/n — 0 almost surely as n — oo, and, since P(ng(ng,d) = c0) — 1 as
ng — 00, My (n)/n — 0 almost surely as n — co. O

‘]—‘ ) + 1{nx(ng,d) <n} <

+ 1{nk(ng,0) <n} =1.

Now, consider the expectation for ng < n < n(ng,d) and some 0 < a < 1

n

Mip(n+1)/(n+ 1)~
B ( My (n)

(” (dAd A Z (o) <M27(1n)>>> T

M)+l — (al) - 50)"
)- () CESE

By the induction assumption and Lemma 8§,

Ay (n) = ded( +d2:1 ()Ad =i (n) (A/[;(lmy%cdld a.s. as n — 00.

In particular, for any € > 0
P(Ag(n) < ¢~ 'd + ¢ for n > ng) — 1 and

P(Ar(n) > ¢ 'd — € for n>ng) — 1 as ng — oc.
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Therefore,
ct=1d/2—e
. (E (Mk(n +1)/(n+1)

fn> > 1, for n>n0> >

M, (n)/ncdfld/Zfe

fn> 1

My (n+1)/(n + 1) 4/2¢

Ak(n) > 14 —¢€ for n > ng, Nk (o, d) = oo) >

1+ (¢ 1d/2 —€/2)/n
P( (1 1jn) a2~

Ar(n) > ¢ td —e, for n > ng,n(ng,d) = oo) —1 as ng — oo and

]:n> <1, for n>n0> >

M) AP

zP(E(Man+nmn+n””Wﬂﬁ

P <]E ( My(n+1)/(n + 1)< 4/

]-‘n> <1,

M (n) fne AP

Ag(n) < A 1d+¢€ for n > ng, Nk (o, d) = oo) >

d—1
N EER LR
(1 + l/n)c d/2+e

Ar(n) < ¢ td+ € for n > ng,ni(ng, ) = oo) =1

as ng — oo. Introduce Markov moments

_; o [ Mi(n+1)/(n 4 1) 42
Vkomg,e = inf { n>ng:E < Ny (n) e 72—

7)1l

d—1
ne d/2—e€/2

My (n)
Av(n) = e gares and Be(n) = = —

fn> <1, or

Mk(n + 1)/(TL 4 1)cd71d/2+6
M) /75

Note that P(vg pny,e = 00) = 1 as ng — oo. Let

Then Ay (nAVk ng,e) and By (nAvV n,..) are supermartingales, and from Doob’s theorem,

M;i.(n M (n
W(S/Q),e — o0 and Wfi/z)ﬂ — 0 almost surely,
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which implies our theorem.
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BEPIIINHBI C HANBOJIBIIINMMU CTEIIEHAMMN B MOJEJIN
NPEAIIOYTUTEJIBHOI'O IITPUCOEVMHEHN A C BBIBOPOM

Maasnukua FO.A.
TBepckoit ToCyIapCTBEHHBIN YHUBEPCUTET, I. TBeph

Hocmynuaa 6 pedaryuro 30.08.2016, nocae nepepabomxy 17.03.2017.

B pabore HaiineHa acCUMITOTHKA MEPBBIX k MAaKCUMYMOB PACIpPeIeIeHUsT
crenierneil B rpade st MOJAe N MPEAIOYTUTETEHOTO TPUCOSIMHEHNUS ¢ BbI-
6opom. B mamboit Momenn Ha KakKIOM IIare J00aBJSeTCs OTHA BEPIIHHA.
3areM MBI cydaidHbIM 06pa3oM BeOUpaem d (d>>2) BepInH, W MPOBOIAM
pebpo U3 HOBOH BEPINUHLI B BEPIIUHY ¢ Haubo/bInel (13 BHIOPDAHHBIX BEP-
[IMH) CTeneHbio. VI3BeCTHO, 9TO B JAHHONH MOJE/M MaKCUMaJbHas CTElNeHb
BEPIIMHBI B rpade pacTeT JTUHEHHO OTHOCUTEIHHO ODIIEro 9ucyia BepIuH, B
TO BpeMsi KaK B MOJIEJISAX MPEIIOYTATETBHOTNO IPUCOeINHEHNs €3 BhIOOPa
[epBbIie k MAKCUMYMOB PACIPE/IEJICHUs CTEHeHeN BEPIIUH PACTYT CyOmHeii-
HO C OIMHAKOBLIM MOKazareeM. JJoKa3aHno, 4To CTeNeHu k-bIX M0 BeJIUUIUHE
CTEMEHN BEPINWH PACTYT CYOJMHEHHO OTHOCHTEIHHO pa3mepa rpada. do-
Ka3aTeIbCTBO UCIOIB3YET CYIECTBOBAHUE B rpade BbIIEIEHHBIX BEPIIUH U
MApPTHHIAJIBHYIO TEXHUKY.

KurroueBbie cioBa: ciaydaiiabie rpadbl, MPEITOYTUTEIHHOE TPUCOEINHE-
HHe, BBIOOD.
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CBenenust 06 aBTOpax

1. Mansimkusa FOpmit A npeeBuu
CTapIIuii MpenogIoBaTe b Kadeapbl MpUKIaIHOH ¢du3uku TBEpPCKOTO rocymapcTBeH-
HOTO YHUBEPCHUTETA.
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