УДК 543.226.541.123.7

СТАБИЛЬНЫЙ ТЕТРАЭДР LiF-Li₂SO₄-NaCl-Na₃FSO₄ ЧЕТЫРЕХКОМПОНЕНТНОЙ ВЗАИМНОЙ СИСТЕМЫ Na,Li//F,Cl,SO₄

Н.Н. Вердиев^{1,2}, А.Б. Алхасов¹, З.Н. Вердиева¹, П.А. Мусаева¹, Е.М. Егорова³, И.М. Кондратюк³

¹Филиал объединенного института высоких температур РАН, г. Махачкала, ²Дагестанский государственный университет, г. Махачкала, ³Самарский государственный технический университет, г. Самара

Дифференциальным термическим, дифференциальным сканирующим калориметрическим методами физико-химического анализа исследован стабильный тетраэдр NaCl – LiF – Li $_2$ SO $_4$ – Na $_3$ FSO $_4$ четырехкомпонентной взаимной системы Na, Li // F, Cl, SO $_4$. Определены температура фазового перехода, энтальпия плавления и содержание исходных солей в четырехкомпонентной эвтектике.

Ключевые слова: эвтектика, галогениды и сульфаты щелочных металлов, фазовая диаграмма, теплонакопитель, химические источники тока.

DOI 10.26456/vtchem2019.3.3

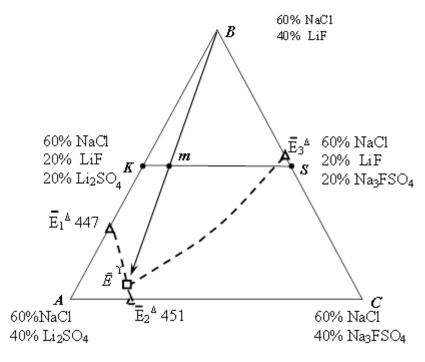
Многокомпонентные системы являются основой современного материаловедения, на их основе разрабатываются многофункциональные материалы. В частности энергоемкие эвтектические смеси солевых систем востребованы в возобновляемой энергетике в качестве теплоносителей, теплонакопителей в устройствах, аккумулирующих тепловую энергию [1-3].

В качестве объекта исследований выбран стабильный тетраэдр $NaCl-LiF-Li_2SO_4-Na_3FSO_4$ четырехкомпонентной взаимной системы Li, Na// F, Cl, SO4. Выбор обоснован тем, что составляющие системы обладают большими значениями энтальпий плавления, и у сульфатов лития, натрия имеются полиморфные превращения [4]. Энтальпия полиморфного превращения сульфата лития выше, чем энтальпия плавления, а величины энтальпий фазовых переходов являются определяющими при подборе теплоаккумулирующих материалов. Наличие в эвтектической смеси компонентов с полиморфными переходами, позволяет расширять диапазон аккумулирования и высвобождения тепловой энергии, как в жидкой, так и твердой фазах.

Исследования предприняты с целью разработки теплонакопителей, теплоносителей и является частью проводимых нами систематических исследований [5-7].

ЭЕСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

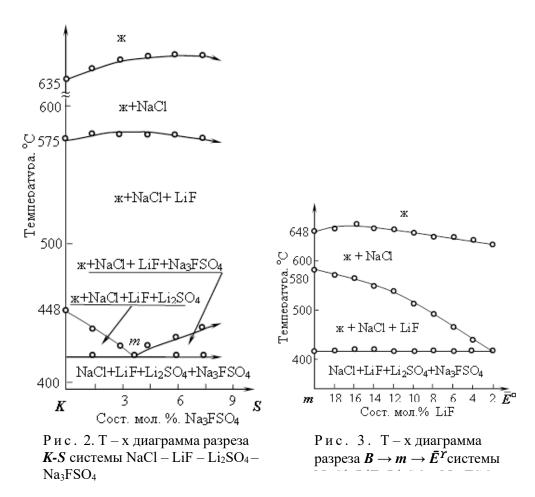
Исследования проводились дифференциальным термическим (ДТА), дифференциальным сканирующим калориметрическим (ДСК) методами физико-химического анализа [8,9]. ДТА и ДСК проводили на установке синхронного термического анализа STA 449 F3 Phoenix фирмы Netzsch, предназначенный для работы в интервале температур от комнатной до 1500 °C, в инертной среде (аргон). Исследования проводились в платиновых тиглях с использованием платинаплатинородиевых сенсоров. Скорость нагревания и охлаждения образцов составляла 10 град./мин. Точность измерения температур ± 0.3 °С, масса навесок 0.1000 - 0.2000 г для ДТА и 0.0010 - 0.0015 для Взвешивание производилось на электронных весах марки ДСК. «VIBRAHT». Индифферентное вещество – Al₂O₃, квалификации «ч.д.а.». Квалификации использованных реактивов: LiF, NaF, NaCl – «хч»; Li₂SO₄, Na₂SO₄ – «чда». Градуировку сенсоров проводили по температурам плавления и полиморфным превращениям безводных неорганических солей и энтальпиям их плавления. Составы выражены в молекулярных процентах, температуры в °С. Исследования по равновесных выявлению фазовых состояний проводились использованием общих правил проекционно-термографического метода [10].


РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для планирования эксперимента необходимы данные о фазовых равновесных состояниях двух- и трехкомпонентных систем, ограняющих исследуемый объект, обзор по которым сделан нами ранее [11].

- 1. LiF NaCl. Диагональное сечение тройной взаимной системы Li, Na // F, Cl. Перевальная эвтектическая точка при 670 °C и 41,5 экв. % фторида лития.
- 2. LiF NaF·Na₂SO₄. Адиагональное сечение обратимо-взаимной системы Li, Na // F, SO₄. Эвтектика при 617 °C и 44 экв. % фторида лития.
- 3. Li_2SO_4 NaCl. Стабильная диагональ трехкомпонентной взаимной системы Li, Na // Cl, SO₄. Перевальная эвтектическая точка при 499 °C и 74 экв. % сульфата лития. Твердые фазы NaCl и Li₂SO₄.
- 4. Li // F, SO₄ . Эвтектика при 532 °C и 72,5 экв. % сульфата лития, излом при 806 °C и 9,3 % сульфата лития.
- 5. NaCl Na₃FSO₄. Квазибинарное сечение тройной системы Na // F, Cl, SO₄. Эвтектика при 632 °C и 40 экв. % хлорида натрия.
- $m H_3$ четырех трехкомпонентных систем огранения стабильного тетраэдра $m NaCl-LiF-Li_2SO_4-Na_3FSO_4$ ранее исследованы три:
- 1. $(LiF)_2$ $(NaCl)_2$ Na_3FSO_4 [5]. Эвтектический состав кристаллизуется при 554°C и содержит экв.%: $(LiF)_2$ 26; $(NaCl)_2$ 23; Na_3FSO_4 51.

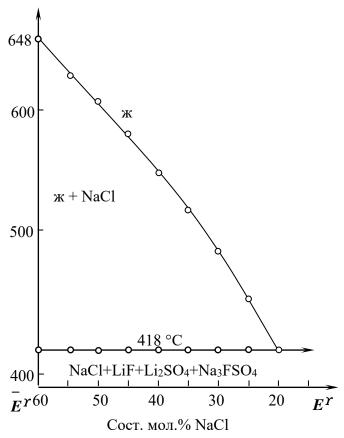
- 2. $(LiF)_2 (NaCl)_2 Li_2SO_4$ [6]. Стабильный секущий треугольник четверной взаимной системы Li, Na / /F, Cl, SO₄ имеющий характер трехкомпонентной системы. Эвтектика при 447 °C и 20,5 экв. % хлорида натрия, 19 экв. % фторида лития, 60,5 экв. % сульфата лития.
- $3.~(LiF)_2-Na_3FSO_4-Li_2SO_4~[12].$ Фазовая ячейка тройной взаимной системы Li, Na // F, SO_4. Эвтектика при 442°С и 11,5 экв. % LiF, 63 экв. % Li₂SO₄, 25,5 экв. % Na₂SO₄, перитектика при 570°С и 29,5 экв. % LiF, 7,5 экв. % Li₂SO₄, 63 экв. % Na₂SO₄.
- 4. Температуру кристаллизации и концентрации исходных компонентов в эвтектике системы $(NaCl)_2 Li_2SO_4 Na_3FSO_4$, являющейся секущим треугольником четверной взаимной системы Li, Na // F, Cl, SO₄ выявлены с использованием расчетных методов [13, 14]. Эвтектика при 451°C и 12,2 экв.% NaCl, 69,3 экв. % Li₂SO₄, 18,5 экв. % Na₃FSO₄.


стороны сечения ABC, с полюса кристаллизации хлорида натрия, нанесены проекции тройных эвтектик $\bar{\mathrm{E}}_1$, $\bar{\mathrm{E}}_2$, $\bar{\mathrm{E}}_3$ (рис.1).

P и с . 1 . Политермическое сечение ABC и расположение одномерных разрезов K-S и $B\to m\to \bar E^Y$

Экспериментально ДТА исследован одномерный политермический разрез KS, где: K-60 мол. % NaCl+20 мол. % LiF+20 мол. % Li₂SO₄; S-60 мол.% NaCl+20%LiF +20% Na₃FSO₄ расположенный на двухмерном политермическом сечении ABC (рис.1). На T-x диаграмме разреза KS, построенной по данным ДТА, две

плавные кривые первичной и вторичной кристаллизаций, а ветви третичной кристаллизации пересекаются с эвтектической прямой в точке m, являющейся двойной проекцией четырёхкомпонентной эвтектики и показывающей постоянные соотношения сульфата лития и соединения конгруэнтного плавления Na_3FSO_4 в эвтектике E^{\square} (рис.1,2).



Соотношение третьего компонента (фторида лития) в эвтектике определено исследованием политермического разреза $B \to m \to \bar{E}^{\Upsilon}$ (рис.3).

Эвтектический состав E^{Υ} , кристаллизующийся при 418°C и содержащий мол. %: NaCl - 20; LiF - 4; Li₂SO₄ - 62,3; Na₃FSO₄ - 13,7 определён исследованием нонвариантного разреза NaCl $\to \bar{E}^{\Upsilon} \to E^{\Upsilon}$ (рис.4). На термограмме ДТА эвтектического состава зафиксирован один термоэффект, свидетельствующий о наступлении нонвариантного процесса, которому соответствует фазовая реакция:

ж

LiF+ NaCl+ Li₂SO₄+ Na₃FSO₄

P и с . 4 . T – х диаграмма системы NaCl – LiF – Li₂SO₄ – Na₃FSO₄ в разрезе NaCl $\to \bar{E}^{\square} \to E^{r}$

Энтальпия плавления эвтектического состава, определенная ДСК, соответствует 264Дж/г.

Заключение

В результате исследования стабильного тетраэдра NaCl - LiF -Li₂SO₄ - Na₃FSO₄ с использованием методов ДТА и ДСК экспериментально выявлены температура плавления, энтальпия фазового перехода концентрации солей И исходных четырехкомпонентной эвтектике. Выявленный эвтектический состав может быть использован в качестве теплоаккумулирующего материала, расплавленного электролита химических источниках тока, флюса для сварки цветных металлов и справочного материала.

Работа выполнена с использованием аппаратуры Аналитического центра коллективного пользования ДНЦ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Игнатьева Е.О., Дворянова Е.М., Гаркушин И.К. // Журн.неорганической химии. 2017. Т.62. №2. С. 245–248; DOI: 10.7868/S0044457X17020076
- 2. Духанин Г.П., Лопатин С.И. // Журнал общей химии. 2019. Т. 89. № 3. С. 447-451; DOI 10.1134/S0044460X1903017X
- 3. Gabisa E.W., Aman A. // J. Solan Energy. 2016. Vol. DOI. 10.1155/2016/2405094
- 4. Глушко В.П. Термические константы веществ // Вып. X Ч. І. Таблицы принятых значений: Li, Na. M.: АН СССР, ВИНИТИ, Институт высоких температур. 1981. 300 с.
- 5. Вердиев Н.Н., Омарова С.М., Алхасов А.Б., Магомедбеков У.Г., Гасангаджиева У.Г., Дворянчиков В.И. // Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 6. С. 77-82; DOI: 10.6060/tcct.2017606.5537
- 6. Омарова С.М., Вердиева З.Н., Алхасов А.Б., Магомедбеков У.Г., Арбуханова П.А., Вердиев Н.Н. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 10. С. 4-8; DOI: 10.6060/tcct.20176010.5631
- 7. Вердиев Н.Н, Омарова С.М., Алхасов А.Б., Магомедбеков У.Г., Арбуханова П.А., Искендеров Э.Г. Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 11. С. 46 49; DOI: 10.6060/tcct.20165911.5424.
- 8. Альмяшев В.И., Кириллова С.А., Гусаров В.В. Методы термического анализа материалов. Электронное учебное пособие. Санкт-Петербург: Изд-во СПбГЭТУ «ЛЭТИ». 2011. 48 с.
- 9. Зломанов В.П., Афиногенов Ю.П., Гончаров Е.Г., Семенова Г.В. Физико-химический анализ многокомпонентных систем: учебное пособие для ВУЗов по направлению специальности «Химия». М., Изд-во МФТИБ. 2006. 332 с.
- 10. Космынин А.С., Трунин А.С. Оптимизация экспериментального исследования гетерогенных многокомпонентных систем. Самара: Сам. ГТУ. 2007. Т. 14. 160 с.
- 11. Омарова С.М., Арбуханова П.А., Магомедбеков У.Г., Вердиев Н.Н., Некрасов Д.А. Ионно-обменные процессы в системе Li, Na // F, Cl, SO₄. Махачкала: Вестник ДГУ. 2017. №. 1. С. 42-47; DOI:10.21779/2542-0321-2017-32-1-42-47.
- 12. Справочник по плавкости систем из безводных неорганических солей. Н.К. Воскресенская, Н.Н. Евсева, С.И. Беруль, И.П. Верещетина. М.; Л.: Изд-во АН СССР. 1961. Т.2. Системы тройные, тройные взаимные и более сложные. 585 с.
- 13. Мощенская Е.Ю. Программный комплекс для моделирования фазовых программ «состав температура» и «состав ток» в физико-химическом анализе солевых и металлических систем. Свидетельство об официальной регистрации программы для ЭВМ № 2006612377 от 05.09.2006.
- 14. Афанасьева О.С., Егорова Г.Ф. // Вестник Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2011. № 4 (25). С. 134 145.

STABLE TETRAHEDRON LiF-Li₂SO₄-NaCl-Na₃FSO₄ FOUR-COMPONENT MUTUAL SYSTEM Na,Li//F,Cl,SO₄

N.N. Verdiev^{1, 2}, A.B. Alkhasov¹, Z.N. Verdieva¹, P.A. Musaeva¹, E.M. Egorova³, I.M. Kondratuk³

¹ Branch of the joint Institute of high temperatures of RAS, Makhachkala, ² Dagestan state University, Makhachkala ³Samara state technical University, Samara

A stable tetrahedron NaCl– LiF – Li₂SO₄ – Na₃FSO₄ four – component mutual system Na, Li // F, Cl, SO₄ was studied by differential thermal scanning calorimetric methods of physico-chemical analysis. Determined the temperature of phase transition, enthalpy of melting and the contents of the source of salts in the Quaternary eutectic.

Keywords: eutectic, halides and sulfates of alkali metals, phase diagram, heat accumulator, chemical current sources.

Об авторах:

ВЕРДИЕВ Надинбег Надинбегович — кандидат химических наук, главный научный сотрудник, зав. лаб. «Аккумулирование низкопотенциального терпла и солнечной энергии», Филиала объединенного института высоких температур РАН, доцент кафедры неорганической химии ДГУ: e-mail: verdiev55@ mail.ru

АЛХАСОВ Алибек Басирович – доктор технических наук, профессор, директор Филиала объединенного института высоких температур РАН: e-mail: alibek_alhasov@mail.ru

ВЕРДИЕВА Заира Надинбеговна – кандидат химических наук, научный сотрудник лаборатории «Аккумулирование низкопотенциального терпла и солнечной энергии», Филиала объединенного института высоких температур РАН: e-mail: verdieva.z@ mail.ru

МУСАЕВА Патимат Абдулаевна - кандидат химических наук, в.н.с., лаборатории «Аккумулирование низкопотенциального терпла и солнечной энергии», Филиала объединенного института высоких температур РАН: e-mail: arbuhanova-ivt@ mail.ru

ЕГОРОВА Екатерина Михайловна - к.х.н., доцент, доцент кафедры общей и неорганической химии Сам. ГТУ: e-mail: dvoryanova_kat@mail.ru

КОНДРАТЮК Игорь Мирославович – доктор химических наук, профессор кафедры общей и неорганической химии Сам. ГТУ: e-mail: kondratuk2@mail.ru

Поступила в редакцию 16 февраля 2019 г.