УДК 544.478+665.658.2 DOI 10.26456/vtchem2020.1.5

ИССЛЕДОВАНИЕ СИНТЕЗА N-МЕТИЛГЛЮКОЗИМИНА

С.П. Михайлов, А.М. Сульман, М.Г. Сульман, О.В. Гребенникова, Э.М. Сульман, В.Ю. Долуда, В.Г. Матвеева

ФГБОУ ВО Тверской государственный технический университет, Тверь

Работа посвящена изучению получения N-метилглюкозимина в различных условиях. Проведена оценка кинетических параметров синтеза, расчитан максимальный достигаемый выход.

Ключевые слова: N-метилглюкозимин, оксимы, синтез, кинетика.

N-метилглюкозимин является полупродуктом синетза N-метилглюкозамина, который широко применяется в медицинской и фармацевтической химии для повышения солюбилизации и стабилизации биологически активных соединений фармацевтических препаратов. N-метилглюкозамин традиционно синтезируется методом восстановительной конденсации (Рис. 1) [1-4] глюкозы и метиламина с использованием никеля Ренея в качестве катализатора.

$$H \ C \ O$$
 $H \ C \ N-CH_3$ $H \ C \ NH-CH_3$ $H \ C \ OH$ $H-C-OH$ $H-C$

Рис. 1 – Схема получения N-метил-D-глюкозамина

При этом реакция проводится в диапазоне температур 50-120°С и давлений 90-120 атм в присутствии безводных спиртов, выход продукта составляет 60-80% от теоретически возможного. В связи, с чем для увеличения выхода целевого продукта требует всестороннее изучение химических и физических особенностей протекания процесса.

Для синтеза N-диметил-D-глюкозимина в реактор 1 вносилось $50\text{-}100~\mathrm{r}$ глюкозы, $45\text{-}100~\mathrm{m}$ л $38~\mathrm{mac}.\%$ метиламина и $50\text{-}100~\mathrm{m}$ л этилового спирта с концентрацией $96~\mathrm{mac}.\%$.

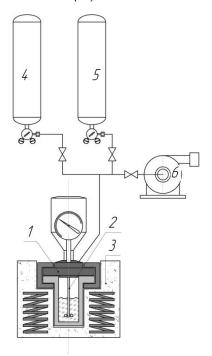


Рис. 2. Установка для проведения процесса синтеза N-метил-D-глюкозамина (1 — реактор, 2 — мешалка, 3 — нагреватель, 4 — баллон с азотом, 5 — баллон с водородом, 6 — вакуумный насос)

После чего реактор продувался азотом из баллона 4, для удаления следов кислорода и нагревался до $60\text{-}120^{\circ}\mathrm{C}$. В течение часа производилось перемешивание реакционной массы со скоростью 300 об/мин. Также в процессе эксперимента проводился отбор проб для анализа полноты протекания реакции. Анализ полупродуктов реакции проводился методом газовой хроматографии с предварительной дереватизацией пробы. Пробу для анализа готовят следующим образом: 0.01 мл исследуемого раствора упаривают под вакуумом на водяной бане при t 55-65 $^{\circ}\mathrm{C}$ до сухого остатка, который растворяют в 0.4 мл пиридина, после чего к раствору образца добавляют 0.35 мл гексаметилдисилазана и 0.2 мл триметилхлорсилана. Пробе дают отстояться в течение часа и анализируют жидкую фазу.

Увеличение начальной концентрации D-глюкозы (рисунок 3) с 0.3 до 38 моль/л способствовало увеличению скорости накопления N-метилимина.

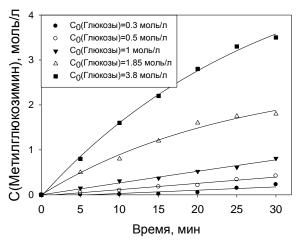


Рис. 3. Влияние начальной концентрации D-глюкозы на накопление N-метилглюкозимина (C_o (глюкозы)=0.3-3.8 моль/л, C_o (метиламин)=3.8 моль/л, растворитель – этанол 96 мас.%, t=120°C)

Построение зависимости скорости накопления N-метилглюкозимина от начальной концентрации D-глюкозы в логарифмических координатах (Рисунок 4), позволило определить порядок реакции по N-метилглюкозимину. При этом вычисленный частный порядок реакции по глюкозе составил 1.08.



Рис. 4. Влияние логарифма начальной концентрации D-глюкозы на логарифм скорости накопления N-метилглюкозимина (C_o (глюкозы)=0.3-3.8 моль/л, C_o (метиламин)=3.8 моль/л, растворитель – этанол 96 мас.%, t=120°C)

Также увеличение начальной концентрации метиламина способствует увеличению скорости накопления N-глюкозметилимина (Рисунок 5).

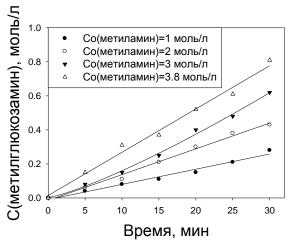


Рис. 5. Влияние начальной концентрации метиламина на накопление N-метилглюкозимина (C_o (глюкозы)=1 моль/л, C_o (метиламин)=1-3.8 моль/л, растворитель – этанол 96 мас.%, t=120°C)

При построении зависимости скорости накопления N-метилглюкозимина от начальной концентрации метиламина в логарифмических координатах (Рисунок 6) установлено значение частного порядок реакции по метиламину, который составил 0.98.

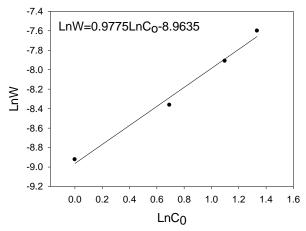


Рис. 6. Влияние логарифма начальной концентрации метиламина на логарифм скорости накопления N-метилглюкозимина (C_o (глюкозы)=1 моль/л, C_o (метиламин)=1-3.8 моль/л, растворитель – этанол 96 мас.%, t=120°C)

Определенные частные порядки реакции по глюкозе и метиламину близки к единице, а общий порядок реакции возможно принять равный двум. На основании температурной зависимости концентрации N-метилимина были определены энергии активации и предэкспоненциальные множители уравнения Аррениуса для прямой и обратной реакции (Рисунок 1, таблица 1).

Таблица 1. Предэкспоненциальные множители и энергии активации для прямой и обратной реакции синтеза N-метилимина

и обратной реакции синтеза 11-метилимина			
k _o л/(моль c)	σ	Е _{акт,} кДж/моль	σ
Прямая реакция			
128945	3240	54	5.2
Обратная реакция			
21920	684	65	6.8

Общее кинетическое уравнение реакции синтеза метилимина может быть представлено уравнением (1).

$$\frac{d(C)}{t} = k_1[A][B] - k_2[C][H_2O]$$
 (1)

Где А – концентрация глюкозы, моль/л;

В – концентрация метиламина, моль/л;

С – концентрация N-глюкозметилимина, моль/л

 $[H_2O]$ – концентрация воды, моль/л

В условии равновесия скорость накопления N-метилглюкозимина равна нулю, в результате чего возможно получить уравнение (2) для оценки максимально возможного выхода N-метилглюкозимина.

$$[C] = \frac{k_1[A][B]}{k_2[H_2O]} \tag{2}$$

Исходя из полученных энергий активации и пердэкспоненциальных множителей была поучена зависимость выхода метилимина от начальной концентрации воды (Рисунок 7), из которого установлена максимальный выход N-глюкозметилимина в 92% может быть достигнут только при отсутствии таковой в исходных растворов. Увеличение содержания воды в исходных реагентах способствует

значительному уменьшению выхода N-метилглюкозамина, так при начальной концентрации воды в реакционном растворе 5.5 моль/л (10 мас.%) выход N-метилглюкозимина уменьшается до 76%.

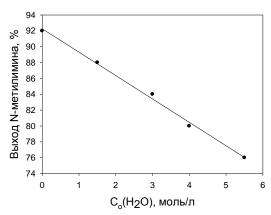


Рис. 7. Влияние начальной концентрации воды на выход N-метил-глюкозимина (C_o (глюкозы)=1 моль/л, C_o (метиламин)=3.8 моль/л, t=120°C)

Таким образом, для увеличения выхода N-метилглюкозамина требуется отсутствие воды в исходных реагентах или химическое связывание образующейся воды в процессе реакции.

Проведенное исследование выполнено в рамках проектов $P\Phi\Phi U$ 18-08-00489, 19-38-90050 .

Список литературы

- 1. Practical Catalytic Hydrogenation: Techniques and Applications. / Freifelder M.: Wiley-Interscience, 1971.
- 2. Harrington P. J., Lodewijk E. Twenty Years of Naproxen Technology // Organic Process Research & Development. 1997. T. 1, № 1. C. 72-76.
- 3. Holton P. G. Process for the resolution of d,1 2-(6-methoxy-2-naphthyl)propionic acid // Book Process for the resolution of d,1 2-(6-methoxy-2-naphthyl)propionic acid / Editor. US: Syntex Corporation (Panama, PA), 1985.
- 4. Radisson J. Process for the preparation of N-(2-chloro-benzyl)(2-thienyl)-2-ethyl amine. // Book Process for the preparation of N-(2-chloro-benzyl)(2-thienyl)-2-ethyl amine. / Editor. FR: Sanofi SA. (FR), 1988.

Об авторах:

Михайлов Степан Петрович — аспирант регионального технологического центра, $\Phi\Gamma EOV B\Pi O$ Тверской государственный университет, e-mail: stefan.oblivion@mail.ru

Сульман Александрина Михайловна — аспирант кафедры Биотехнологии, химии и стандартизации, ФГБОУ ВПО Тверской государственный технический университет, e-mail:alexsulman@mail.ru.

Сульман Михаил Геннадьевич, д.х.н., профессор, заведующий кафедрой Биотехнологии, химии и стандартизации, Тверской государственный технический университет, химико-технологический факультет, e-mail: sulman@online.tver.ru.

Гребенникова Ольга Валентиновна — к.х.н., доцент кафедры Биотехнологии химии и стандартизации, $\Phi \Gamma EOV B\Pi O$ Тверской государственный технический университет, e-mail: sulman@online.tver.ru.

Сульман Эсфирь Михайловна — д.х.н., профессор кафедры Биотехнологии химии и стандартизации, ФГБОУ ВПО Тверской государственный технический университет, e-mail: sulman@online.tver.ru.

Матвеева Валентина Геннадьевна — д.х.н., профессор кафедры Биотехнологии химии и стандартизации, $\Phi \Gamma EOV$ ВПО Тверской государственный технический университет, e-mail: <u>valen-matveeva@yandex.ru</u>.

N-METHYLGLUCOSEIMINE SYNTHESIS STUDY

"""C.P. Mikchailov, A.M. Sulman, M.G. Sulman, O.V. Grebennikova, GO OSulman, V.Yu. Doluda, V.G. Matveeva

Tver State Technical University, Tver

The work is devoted to the study of the preparation of N-methylglucosimine under various conditions. The kinetic parameters of the synthesis were estimated, and the maximum of possible achieved yield was calculated. **Keywords**: N-methylglucosimine, oximes, synthesis, kinetics.