Ветров, Д.П. и Кропотов, Д.А. и Пташко, Н.А. (2009) О достижении компромисса между точностью и устойчивостью классификаторов в задаче выбора наилучшей ядровой функции при байесовском обучении. Вестник ТвГУ. Серия: Прикладная математика (15). С. 47-52. ISSN 1995-0136
Предварительный просмотр |
PDF
- Опубликованная версия
393kB |
Абстракт
Рассматривается задача подбора ядровой функции в методе релевантных векторов (RVM). В части 1 данной работы был сформулирован принцип устойчивости и на его основе определен коэффициент ядровой пригодности KV, максимизация которого позволяет подбирать значение параметра ширины ядровой функции в RVM. Часть 2 данной работы описывает алгоритм обучения и содержит результаты экспериментов по применению предложенного подхода для модельных и реальных задач.
Абстракт (англ.)
In the paper we show that RBF kernel selection in relevance vector machines (RVM) classifier requires extension of classifiers model. In new model integration over posterior probability becomes computationally unavailable. We propose a method of local evidence estimation which establishes a compromise between accuracy and stability of classifier.
Тип объекта: | Статья |
---|---|
Сведения об авторах: | Дмитрий Петрович Ветров, Московский государственный университет им. М.В. Ломоносова, Россия, 119991, г. Москва, ГСП-1, Ленинские горы, МГУ, д. 1, стр. 52, факультет ВМиК, научный сотрудник кафедры математических методов прогнозирования факультета вычислительной математики и кибернетики. Дмитрий Александрович Кропотов, Вычислительный центр им. А.А. Дородницына Российской Академии Наук, Россия, 119333, г. Москва, ул. Вавилова, 40, ВЦ РАН, младший научный сотрудник. Никита Олегович Пташко, Московский государственный университет им. М.В. Ломоносова, Россия, 119991, г. Москва, ГСП-1, Ленинские горы, МГУ, д. 1, стр. 52, факультет ВМиК, аспирант кафедры математических методов прогнозирования факультета вычислительной математики и кибернетики. |
Ключевые слова: | распознавание образов, байесовский подход, выбор модели, метод релевантных векторов |
Ключевые слова (англ.): | Machine learning, Bayesian framework, Model selection, Relevance Vector Machine |
Категории: | 6 Прикладные науки. Медицина. Техника > 68 Различные отрасли промышленности и ремесла, производящие конечную продукцию. Точная механика. Легкая промышленность > 681 Точная механика > 681.5 Автоматика. Теория, методы расчета и аппаратура систем автоматического управления и регулирования. Техническая кибернетика. > 681.51 Системы автоматического управления (САУ). Кибернетические характеристики систем > 681.513 Системы с детерминированными входными воздействиями > 681.513.7 Самообучающиеся, самонастраивающиеся системы (детерминированные) |
Подразделения: | Институты, НИИ > Вычислительный центр им. А.А.Дородницына РАН |
ID Code: | 963 |
Deposited On: | 08 Янв 2017 08:11 |
Последнее изменение: | 08 Янв 2017 08:11 |
Repository Staff Only: item control page